材料科学
石墨烯
金属间化合物
极限抗拉强度
氧化物
复合材料
微观结构
复合数
相(物质)
镍
拉曼光谱
尼亚尔
粉末冶金
冶金
纳米技术
化学
合金
光学
物理
有机化学
作者
Olga Yu. Kurapova,Ivan Smirnov,Elena N. Solovieva,Ya. V. Konakov,Artem G. Glukharev,В. Г. Конаков
标识
DOI:10.1016/j.jallcom.2022.166912
摘要
Nickel aluminides, namely NiAl, Ni3Al and NiAl3, based functional materials have the attractive properties for structural applications at elevated temperatures. However, the intermetallics in the Al-Ni system are rather brittle which limits their practical applications. Graphene and its derivatives are known to be excellent reinforcements for various metallic and ceramic matrices. In the present work 0.5 wt% reduced graphene oxide (rGO) was incorporated in the Al-Ni system for the first time using modified powder metallurgy technique. Phase composition, structures of powders and composite intermetallic materials were investigated via SEM, EDS, XRD, Raman spectroscopy and hydrostatic weighing. The effect of rGO on the phase formation, microstructure and mechanical properties of the composites was discussed. Via XRD it was shown, that rGO favors the formation of AlNi, Ni3Al and Al3Ni compounds in the Al-Ni system. The Al3Ni2 was shown to be first intermediate phase appearing in the phase sequence. Due to the reinforcement effect of rGO, 80nNi-rGO composite showed about 5 times higher tensile strength, about 3 times higher Young's modulus and improved elongation as compared to the same composition without rGO. The 40nNi-rGO and 51nNi-rGO composites exhibited superior hardness of 297 ± 28 HV0.3, 561 ± 121 HV0.3 and 640 ± 118 HV0.3.
科研通智能强力驱动
Strongly Powered by AbleSci AI