E2EGI: End-to-End Gradient Inversion in Federated Learning

计算机科学 反演(地质) 深度学习 互联网 人气 性能指标 人工智能 数据挖掘 万维网 心理学 古生物学 社会心理学 构造盆地 经济 生物 管理
作者
Zhaohua Li,Le Wang,Guangyao Chen,Zhiqiang Zhang,Muhammad Shafiq,Zhaoquan Gu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (2): 756-767 被引量:8
标识
DOI:10.1109/jbhi.2022.3204455
摘要

A plethora of healthcare data is produced every day due to the proliferation of prominent technologies such as Internet of Medical Things (IoMT). Digital-driven smart devices like wearable watches, wristbands and bracelets are utilized extensively in modern healthcare applications. Mining valuable information from the data distributed at the owners' level is useful, but it is challenging to preserve data privacy. Federated learning (FL) has swiftly surged in popularity due to its efficacy in dealing privacy vulnerabilities. Recent studies have demonstrated that Gradient Inversion Attack (GIA) can reconstruct the input data by leaked gradients, previous work demonstrated the achievement of GIA in very limited scenarios, such as the label repetition rate of the target sample being low and batch sizes being smaller than 48. In this paper, a novel method of End-to-End Gradient Inversion (E2EGI) is proposed. Compared to the state-of-the-art method, E2EGI's Minimum Loss Combinatorial Optimization (MLCO) has the ability to realize reconstructed samples with higher similarity, and the Distributed Gradient Inversion algorithm can implement GIA with batch sizes of 8 to 256 on deep network models (such as ResNet-50) and ImageNet datasets. A new Label Reconstruction algorithm is developed that relies only on the gradient information of the target model, which can achieve a label reconstruction accuracy of 81% in one batch sample with a label repetition rate of 96%, a 27% improvement over the state-of-the-art method. This proposed work can underpin data security assessments for healthcare federated learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
輝23发布了新的文献求助10
1秒前
1秒前
2秒前
肉末茄子完成签到,获得积分10
2秒前
dichloro完成签到,获得积分10
3秒前
快乐灵安完成签到,获得积分10
3秒前
hu完成签到,获得积分10
3秒前
牧长一完成签到 ,获得积分0
4秒前
4秒前
柠橙发布了新的文献求助10
4秒前
ll发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
bb发布了新的文献求助10
5秒前
李健的粉丝团团长应助11采纳,获得10
6秒前
xxyh完成签到,获得积分10
6秒前
闪闪的书本完成签到 ,获得积分10
7秒前
changyee发布了新的文献求助10
7秒前
NINI发布了新的文献求助10
7秒前
7秒前
李铮发布了新的文献求助10
7秒前
哈哈哈哈啊哈完成签到,获得积分10
7秒前
所所应助99668采纳,获得10
8秒前
Jim完成签到,获得积分10
8秒前
吃的了细糠的山猪完成签到,获得积分10
9秒前
妮妮发布了新的文献求助10
9秒前
夏天不回来完成签到,获得积分10
9秒前
施xy完成签到,获得积分10
9秒前
慕青应助mbf采纳,获得10
9秒前
gyz发布了新的文献求助10
10秒前
少少少完成签到,获得积分10
10秒前
wangtongxue完成签到 ,获得积分10
10秒前
等待的易梦完成签到 ,获得积分10
12秒前
13秒前
Aqua完成签到,获得积分10
13秒前
Windsea完成签到,获得积分10
14秒前
怡然曼彤完成签到 ,获得积分20
14秒前
jjb123666完成签到,获得积分20
14秒前
打打应助布鲁采纳,获得10
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152244
求助须知:如何正确求助?哪些是违规求助? 2803512
关于积分的说明 7854215
捐赠科研通 2461077
什么是DOI,文献DOI怎么找? 1310159
科研通“疑难数据库(出版商)”最低求助积分说明 629126
版权声明 601765