E2EGI: End-to-End Gradient Inversion in Federated Learning

计算机科学 反演(地质) 深度学习 互联网 人气 性能指标 人工智能 数据挖掘 万维网 心理学 社会心理学 生物 构造盆地 古生物学 经济 管理
作者
Zhaohua Li,Le Wang,Guangyao Chen,Zhiqiang Zhang,Muhammad Shafiq,Zhaoquan Gu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (2): 756-767 被引量:8
标识
DOI:10.1109/jbhi.2022.3204455
摘要

A plethora of healthcare data is produced every day due to the proliferation of prominent technologies such as Internet of Medical Things (IoMT). Digital-driven smart devices like wearable watches, wristbands and bracelets are utilized extensively in modern healthcare applications. Mining valuable information from the data distributed at the owners' level is useful, but it is challenging to preserve data privacy. Federated learning (FL) has swiftly surged in popularity due to its efficacy in dealing privacy vulnerabilities. Recent studies have demonstrated that Gradient Inversion Attack (GIA) can reconstruct the input data by leaked gradients, previous work demonstrated the achievement of GIA in very limited scenarios, such as the label repetition rate of the target sample being low and batch sizes being smaller than 48. In this paper, a novel method of End-to-End Gradient Inversion (E2EGI) is proposed. Compared to the state-of-the-art method, E2EGI's Minimum Loss Combinatorial Optimization (MLCO) has the ability to realize reconstructed samples with higher similarity, and the Distributed Gradient Inversion algorithm can implement GIA with batch sizes of 8 to 256 on deep network models (such as ResNet-50) and ImageNet datasets. A new Label Reconstruction algorithm is developed that relies only on the gradient information of the target model, which can achieve a label reconstruction accuracy of 81% in one batch sample with a label repetition rate of 96%, a 27% improvement over the state-of-the-art method. This proposed work can underpin data security assessments for healthcare federated learning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
熬夜波比应助morry5007采纳,获得10
刚刚
崔雪峰完成签到,获得积分10
刚刚
半农完成签到,获得积分10
1秒前
科研通AI2S应助杭紫雪采纳,获得20
1秒前
MchemG应助xpqiu采纳,获得30
2秒前
2秒前
2秒前
是毛果芸香碱完成签到,获得积分10
2秒前
2秒前
dahuahau完成签到,获得积分10
2秒前
随便起个名完成签到,获得积分10
3秒前
ccc完成签到,获得积分10
3秒前
3秒前
权志龙完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
PHI完成签到 ,获得积分10
3秒前
3秒前
dus116完成签到,获得积分10
3秒前
一向年光无限身完成签到,获得积分10
4秒前
冰华完成签到,获得积分10
4秒前
Solaris完成签到 ,获得积分10
4秒前
温医第一打野完成签到,获得积分10
4秒前
科研通AI6应助ccz采纳,获得10
5秒前
hope完成签到,获得积分10
5秒前
邹醉蓝完成签到,获得积分0
5秒前
牛牛牛完成签到,获得积分10
6秒前
萧水白完成签到,获得积分10
6秒前
飘逸映冬完成签到,获得积分10
6秒前
wk发布了新的文献求助10
7秒前
雪梨完成签到,获得积分10
7秒前
大力超大力完成签到 ,获得积分10
7秒前
diudiu发布了新的文献求助10
7秒前
7秒前
科科克尔克完成签到 ,获得积分10
7秒前
爱笑的蘑菇完成签到,获得积分10
8秒前
8秒前
djshao完成签到,获得积分10
9秒前
水煮鱼完成签到,获得积分10
9秒前
今后应助qinxiaojian0812采纳,获得10
9秒前
聪明飞飞完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664939
求助须知:如何正确求助?哪些是违规求助? 4873377
关于积分的说明 15110105
捐赠科研通 4823973
什么是DOI,文献DOI怎么找? 2582614
邀请新用户注册赠送积分活动 1536518
关于科研通互助平台的介绍 1495130