E2EGI: End-to-End Gradient Inversion in Federated Learning

计算机科学 反演(地质) 深度学习 互联网 人气 性能指标 人工智能 数据挖掘 万维网 心理学 古生物学 社会心理学 构造盆地 经济 生物 管理
作者
Zhaohua Li,Le Wang,Guangyao Chen,Zhiqiang Zhang,Muhammad Shafiq,Zhaoquan Gu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (2): 756-767 被引量:8
标识
DOI:10.1109/jbhi.2022.3204455
摘要

A plethora of healthcare data is produced every day due to the proliferation of prominent technologies such as Internet of Medical Things (IoMT). Digital-driven smart devices like wearable watches, wristbands and bracelets are utilized extensively in modern healthcare applications. Mining valuable information from the data distributed at the owners' level is useful, but it is challenging to preserve data privacy. Federated learning (FL) has swiftly surged in popularity due to its efficacy in dealing privacy vulnerabilities. Recent studies have demonstrated that Gradient Inversion Attack (GIA) can reconstruct the input data by leaked gradients, previous work demonstrated the achievement of GIA in very limited scenarios, such as the label repetition rate of the target sample being low and batch sizes being smaller than 48. In this paper, a novel method of End-to-End Gradient Inversion (E2EGI) is proposed. Compared to the state-of-the-art method, E2EGI's Minimum Loss Combinatorial Optimization (MLCO) has the ability to realize reconstructed samples with higher similarity, and the Distributed Gradient Inversion algorithm can implement GIA with batch sizes of 8 to 256 on deep network models (such as ResNet-50) and ImageNet datasets. A new Label Reconstruction algorithm is developed that relies only on the gradient information of the target model, which can achieve a label reconstruction accuracy of 81% in one batch sample with a label repetition rate of 96%, a 27% improvement over the state-of-the-art method. This proposed work can underpin data security assessments for healthcare federated learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6666666666完成签到 ,获得积分10
3秒前
zz完成签到,获得积分10
3秒前
Popeye应助阿胡采纳,获得30
4秒前
5秒前
魁魁完成签到,获得积分20
5秒前
PEKIEOKE发布了新的文献求助30
6秒前
6秒前
无语的凡梦完成签到,获得积分10
7秒前
wanci应助二十四桥明月夜采纳,获得10
8秒前
风清扬应助LaTeXer采纳,获得10
8秒前
leo关闭了leo文献求助
9秒前
推土机爱学习完成签到 ,获得积分10
9秒前
李萍萍发布了新的文献求助10
9秒前
9秒前
fdwang完成签到 ,获得积分10
9秒前
清漪完成签到 ,获得积分10
10秒前
深情安青应助海白采纳,获得10
10秒前
晴栀完成签到,获得积分10
10秒前
hetao286完成签到,获得积分10
11秒前
阿三的风光完成签到 ,获得积分10
11秒前
nature完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
科研狗完成签到 ,获得积分10
13秒前
追光者完成签到,获得积分10
13秒前
HJJHJH发布了新的文献求助10
14秒前
Advance.Cheng发布了新的文献求助10
14秒前
传统的大白完成签到,获得积分10
14秒前
复杂的白秋完成签到,获得积分10
15秒前
15秒前
舒适的平蓝完成签到,获得积分10
16秒前
DAI123完成签到,获得积分10
16秒前
16秒前
阳yang发布了新的文献求助10
16秒前
HIH完成签到 ,获得积分10
17秒前
可靠的寒风完成签到,获得积分10
18秒前
Pan完成签到,获得积分10
18秒前
19秒前
19秒前
19秒前
丢丢丢完成签到,获得积分10
19秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038426
求助须知:如何正确求助?哪些是违规求助? 3576119
关于积分的说明 11374556
捐赠科研通 3305834
什么是DOI,文献DOI怎么找? 1819339
邀请新用户注册赠送积分活动 892678
科研通“疑难数据库(出版商)”最低求助积分说明 815029