Regulating the Two‐Stage Accumulation Mechanism of Inactive Lithium for Practical Composite Lithium Metal Anodes

材料科学 锂(药物) 金属锂 复合数 阳极 机制(生物学) 金属 阶段(地层学) 纳米技术
作者
Yingxin Zhan,Peng Shi,Chengbin Jin,Ye Xiao,Mingyue Zhou,Chen‐Xi Bi,Bo‐Quan Li,Xue‐Qiang Zhang,Jia‐Qi Huang
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:32 (43) 被引量:16
标识
DOI:10.1002/adfm.202206834
摘要

Abstract The rapid formation and accumulation of inactive lithium (Li) are principally responsible for the limited lifespan of high‐energy‐density Li metal batteries. The construction of composite Li metal anode with hosts emerges as a promising strategy to mitigate and accommodate inactive Li. However, the mechanism of inactive Li accumulation in composite Li metal anodes remains unknown, severely plaguing the stability of composite Li metal anodes. Herein, the two‐stage accumulation mechanism of inactive Li in composite Li metal anodes and its correlation with the stability of composite Li metal anodes are comprehensively unveiled in pouch cells by nondestructive 3D X‐ray microscopy. First, inactive Li accumulates in the interior of the host and results in a slowly increased polarization. Second, inactive Li overflows the inside of the host and induces a dramatically increased polarization chiefly responsible for the fast decay of the composite Li metal anodes. The current density and external pressure are identified as key factors to regulate the turning point between the two stages for practical composite Li metal anodes. This work provides original fundamentals for the recognition of inactive Li accumulation in composite Li metal anodes and the design of practical Li metal batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小郭完成签到 ,获得积分10
1秒前
龙华之士发布了新的文献求助10
1秒前
smile完成签到,获得积分10
1秒前
斯文败类应助动听导师采纳,获得10
2秒前
2秒前
复杂曼梅发布了新的文献求助10
2秒前
迷糊完成签到,获得积分10
3秒前
3秒前
汉堡包应助Rrr采纳,获得10
4秒前
新的心跳发布了新的文献求助10
4秒前
NN应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
今后应助科研通管家采纳,获得30
6秒前
shouyu29应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得60
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
科研小白应助科研通管家采纳,获得40
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
活力绮兰应助科研通管家采纳,获得10
6秒前
感动秋完成签到 ,获得积分10
7秒前
7秒前
7秒前
gzsy完成签到 ,获得积分10
8秒前
8秒前
sexing发布了新的文献求助10
8秒前
丘比特应助koi采纳,获得10
8秒前
Sang完成签到 ,获得积分10
10秒前
10秒前
11秒前
金色年华完成签到,获得积分10
11秒前
丘比特应助daniel采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808