Nomogram Based on Clinical and Radiomics Data for Predicting Radiation-induced Temporal Lobe Injury in Patients with Non-metastatic Stage T4 Nasopharyngeal Carcinoma

列线图 医学 无线电技术 鼻咽癌 队列 置信区间 磁共振成像 接收机工作特性 阶段(地层学) 放射治疗 放射科 秩相关 核医学 肿瘤科 内科学 机器学习 生物 古生物学 计算机科学
作者
Bin Xiang,Chaosheng Zhu,Yunhua Tang,R. Li,Qichen Ding,Wei Xia,Yunhua Tang,Xiao‐Zhun Tang,Dechen Yao,Anzhou Tang
出处
期刊:Clinical Oncology [Elsevier]
卷期号:34 (12): e482-e492 被引量:6
标识
DOI:10.1016/j.clon.2022.07.007
摘要

To use pre-treatment magnetic resonance imaging-based radiomics data with clinical data to predict radiation-induced temporal lobe injury (RTLI) in nasopharyngeal carcinoma (NPC) patients with stage T4/N0-3/M0 within 5 years after radiotherapy.This study retrospectively examined 98 patients (198 temporal lobes) with stage T4/N0-3/M0 NPC. Participants were enrolled into a training cohort or a validation cohort in a ratio of 7:3. Radiomics features were extracted from pre-treatment magnetic resonance imaging that were T1-and T2-weighted. Spearman rank correlation, the t-test and the least absolute shrinkage and selection operator (LASSO) algorithm were used to select significant radiomics features; machine-learning models were used to generate radiomics signatures (Rad-Scores). Rad-Scores and clinical factors were integrated into a nomogram for prediction of RTLI. Nomogram discrimination was evaluated using receiver operating characteristic analysis and clinical benefits were evaluated using decision curve analysis.Participants were enrolled into a training cohort (n = 139) or a validation cohort (n = 59). In total, 3568 radiomics features were initially extracted from T1-and T2-weighted images. Age, Dmax, D1cc and 16 stable radiomics features (six from T1-weighted and 10 from T2-weighted images) were identified as independent predictive factors. A greater Rad-Score was associated with a greater risk of RTLI. The nomogram showed good discrimination, with a C-index of 0.85 (95% confidence interval 0.79-0.92) in the training cohort and 0.82 (95% confidence interval 0.71-0.92) in the validation cohort.We developed models for the prediction of RTLI in patients with stage T4/N0-3/M0 NPC using pre-treatment radiomics data and clinical data. Nomograms from these pre-treatment data improved the prediction of RTLI. These results may allow the selection of patients for earlier clinical interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助跳跃的香岚采纳,获得10
刚刚
小波完成签到,获得积分10
刚刚
九点半上课了完成签到,获得积分10
刚刚
荷兰香猪完成签到,获得积分10
1秒前
1秒前
物是人非完成签到,获得积分10
1秒前
小豆爱读书完成签到,获得积分10
1秒前
泠希完成签到,获得积分10
1秒前
Hello应助陈chen采纳,获得30
2秒前
卢飞薇发布了新的文献求助10
2秒前
leon完成签到,获得积分10
2秒前
2秒前
winteryoung发布了新的文献求助10
3秒前
SciGPT应助乾坤采纳,获得10
3秒前
NexusExplorer应助sssss采纳,获得10
4秒前
万能图书馆应助风中楷瑞采纳,获得10
4秒前
killCooker发布了新的文献求助10
4秒前
5秒前
Jar发布了新的文献求助20
5秒前
大模型应助du_yehui采纳,获得10
6秒前
6秒前
6秒前
6秒前
登登发布了新的文献求助10
6秒前
吕圆圆圆啊完成签到,获得积分10
7秒前
EarholeDoctor完成签到,获得积分10
7秒前
7秒前
木子发布了新的文献求助10
8秒前
渣渣XM完成签到,获得积分20
8秒前
史一豆完成签到 ,获得积分10
8秒前
uunuun发布了新的文献求助10
9秒前
Zn0103发布了新的文献求助10
9秒前
9秒前
李爱国应助科研r采纳,获得10
10秒前
10秒前
10秒前
boom完成签到,获得积分20
11秒前
Akim应助啥子那采纳,获得10
11秒前
天边的云发布了新的文献求助10
11秒前
Dipsy发布了新的文献求助10
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148410
求助须知:如何正确求助?哪些是违规求助? 2799545
关于积分的说明 7835454
捐赠科研通 2456868
什么是DOI,文献DOI怎么找? 1307446
科研通“疑难数据库(出版商)”最低求助积分说明 628207
版权声明 601655