Nomogram Based on Clinical and Radiomics Data for Predicting Radiation-induced Temporal Lobe Injury in Patients with Non-metastatic Stage T4 Nasopharyngeal Carcinoma

列线图 医学 无线电技术 鼻咽癌 队列 置信区间 磁共振成像 接收机工作特性 阶段(地层学) 放射治疗 放射科 秩相关 核医学 肿瘤科 内科学 机器学习 生物 古生物学 计算机科学
作者
Bin Xiang,Chaosheng Zhu,Yu-Xing Tang,Rui Li,Qichen Ding,Wei Xia,Yu-Xing Tang,Xiao‐Zhun Tang,Dechen Yao,Anzhou Tang
出处
期刊:Clinical Oncology [Elsevier]
卷期号:34 (12): e482-e492 被引量:8
标识
DOI:10.1016/j.clon.2022.07.007
摘要

To use pre-treatment magnetic resonance imaging-based radiomics data with clinical data to predict radiation-induced temporal lobe injury (RTLI) in nasopharyngeal carcinoma (NPC) patients with stage T4/N0-3/M0 within 5 years after radiotherapy.This study retrospectively examined 98 patients (198 temporal lobes) with stage T4/N0-3/M0 NPC. Participants were enrolled into a training cohort or a validation cohort in a ratio of 7:3. Radiomics features were extracted from pre-treatment magnetic resonance imaging that were T1-and T2-weighted. Spearman rank correlation, the t-test and the least absolute shrinkage and selection operator (LASSO) algorithm were used to select significant radiomics features; machine-learning models were used to generate radiomics signatures (Rad-Scores). Rad-Scores and clinical factors were integrated into a nomogram for prediction of RTLI. Nomogram discrimination was evaluated using receiver operating characteristic analysis and clinical benefits were evaluated using decision curve analysis.Participants were enrolled into a training cohort (n = 139) or a validation cohort (n = 59). In total, 3568 radiomics features were initially extracted from T1-and T2-weighted images. Age, Dmax, D1cc and 16 stable radiomics features (six from T1-weighted and 10 from T2-weighted images) were identified as independent predictive factors. A greater Rad-Score was associated with a greater risk of RTLI. The nomogram showed good discrimination, with a C-index of 0.85 (95% confidence interval 0.79-0.92) in the training cohort and 0.82 (95% confidence interval 0.71-0.92) in the validation cohort.We developed models for the prediction of RTLI in patients with stage T4/N0-3/M0 NPC using pre-treatment radiomics data and clinical data. Nomograms from these pre-treatment data improved the prediction of RTLI. These results may allow the selection of patients for earlier clinical interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wzxxxx发布了新的文献求助10
刚刚
斯文败类应助勤劳傲晴采纳,获得10
1秒前
shilong.yang发布了新的文献求助10
1秒前
momo完成签到,获得积分10
2秒前
wxp_bioinfo完成签到,获得积分10
3秒前
3秒前
桐桐应助wangg采纳,获得10
3秒前
Jun完成签到,获得积分10
4秒前
芝士的酒发布了新的文献求助50
4秒前
5秒前
赘婿应助复杂的问玉采纳,获得30
5秒前
6秒前
6秒前
7秒前
端庄白开水完成签到,获得积分10
7秒前
吕春雨发布了新的文献求助10
7秒前
大个应助wxp_bioinfo采纳,获得10
8秒前
yqq完成签到 ,获得积分10
8秒前
9秒前
10秒前
芝士发布了新的文献求助10
10秒前
橘子发布了新的文献求助10
11秒前
11秒前
11秒前
晨曦发布了新的文献求助10
12秒前
12秒前
kobiy完成签到 ,获得积分10
12秒前
wu完成签到 ,获得积分10
13秒前
蛋泥完成签到,获得积分10
13秒前
顾矜应助mingjie采纳,获得10
14秒前
zhaowenxian发布了新的文献求助10
14秒前
勤劳傲晴发布了新的文献求助10
15秒前
15秒前
橘子完成签到,获得积分10
17秒前
可耐的从安完成签到 ,获得积分10
18秒前
zho应助背后的诺言采纳,获得10
18秒前
粥粥完成签到,获得积分10
18秒前
19秒前
打打应助陈杰采纳,获得10
20秒前
充电宝应助柔弱凡松采纳,获得10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794