Machine Learning–Based Systematic Investing in Agency Mortgage-Backed Securities

提前还贷 杠杆(统计) 息票 文件夹 抵押贷款承销 计算机科学 抵押品 精算学 财务 业务 人工智能 按揭保险 意外伤害保险 保险单
作者
Nikhil Arvind Jagannathan,Qiulei Bao
出处
期刊:The journal of financial data science [Pageant Media US]
卷期号:4 (4): 95-109
标识
DOI:10.3905/jfds.2022.1.102
摘要

With a total outstanding balance of more than $8 trillion as of this writing, agency mortgage-backed securities (MBS) represent the second largest segment of the US bond market and the second most liquid fixed-income market after US Treasuries. Institutional investors have long participated in this market to take advantage of its attractive spread over US Treasuries, low credit risk, low transaction cost, and the ability to transact large quantities with ease. MBS are made of individual mortgages extended to US homeowners. The ability for a homeowner to refinance at any point introduces complexity in prepayment analysis and investing in the MBS sector. Traditional prepayment modeling has been able to capture many of the relationships between prepayments and related factors such as the level of interest rates and the value of the embedded prepayment option, yet the manual nature of variable construction and sheer amount of available data make it difficult to capture the dynamics of extremely complex systems. The long history and large amount of data available in MBS make it a prime candidate to leverage machine learning (ML) algorithms to better explain complex relationships between various macro- and microeconomic factors and MBS prepayments. The authors propose a systematic investment strategy using an ML-based mortgage prepayment model approach combined with a coupon allocation optimization model to create an optimal portfolio to capture alpha vs. a benchmark.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助张111采纳,获得10
刚刚
平淡路人完成签到,获得积分10
刚刚
张婧仪发布了新的文献求助10
1秒前
SAY完成签到,获得积分10
1秒前
1秒前
1秒前
要减肥刚完成签到,获得积分10
2秒前
Ergou完成签到 ,获得积分10
2秒前
草莓苹果发布了新的文献求助10
3秒前
浮游应助yangminmin采纳,获得10
3秒前
阮楷瑞发布了新的文献求助10
3秒前
3秒前
蕉蕉完成签到,获得积分10
3秒前
林小不脏完成签到,获得积分10
4秒前
4秒前
dduo发布了新的文献求助10
4秒前
4秒前
5秒前
天天快乐应助晶晶采纳,获得10
5秒前
玉洁完成签到,获得积分10
5秒前
慕青应助药丸采纳,获得30
6秒前
科研通AI5应助hq6045x采纳,获得10
6秒前
boen发布了新的文献求助10
6秒前
田様应助虚心的以南采纳,获得10
6秒前
水尽云生处完成签到,获得积分10
7秒前
浮游应助生动路人采纳,获得10
7秒前
7秒前
掠影完成签到,获得积分10
7秒前
大伯了发布了新的文献求助10
8秒前
8秒前
星辰大海应助月兮2013采纳,获得10
8秒前
8秒前
日川冈坂发布了新的文献求助10
8秒前
9秒前
动点子智慧完成签到,获得积分10
9秒前
沧浪完成签到,获得积分10
9秒前
9秒前
yolo发布了新的文献求助10
9秒前
10秒前
lrll完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
Wolbachia-mediated fitness enhancement and reproductive manipulation in the South American tomato pinworm, Tuta absoluta 400
One Health Case Studies: Practical Applications of the Transdisciplinary Approach 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5099418
求助须知:如何正确求助?哪些是违规求助? 4311309
关于积分的说明 13434264
捐赠科研通 4138907
什么是DOI,文献DOI怎么找? 2267559
邀请新用户注册赠送积分活动 1270553
关于科研通互助平台的介绍 1206856