COVID-19 Chest X-rays Classification Through the Fusion of Deep Transfer Learning and Machine Learning Methods

人工智能 学习迁移 机器学习 支持向量机 深度学习 计算机科学 2019年冠状病毒病(COVID-19) 提取器 特征(语言学) 特征提取 工程类 医学 哲学 语言学 疾病 病理 工艺工程 传染病(医学专业)
作者
Nour Eldeen M. Khalifa,Mohamed Hamed N. Taha,Ripon K. Chakrabortty,Mohamed Loey
出处
期刊:Lecture notes on data engineering and communications technologies 卷期号:: 1-11
标识
DOI:10.1007/978-981-19-2948-9_1
摘要

One of the most challenging issues that humans face in the last decade is in the health sector, and it is threatening his existence. The COVID-19 is one of those health threats as declared by the World Health Organization (WHO). This spread of COVID-19 forced WHO to declare this virus as a pandemic in 2019. In this paper, COVID-19 chest X-rays classification through the fusion of deep transfer learning and machine learning methods will be presented. The dataset “DLAI3 Hackathon Phase3 COVID-19 CXR Challenge” is used in this research for investigation. The dataset consists of three classes of X-rays images. The classes are COVID-19, Thorax Disease, and No Finding. The proposed model is made up of two main parts. The first part for feature extraction, which is accomplished using three deep transfer learning algorithms: AlexNet, VGG19, and InceptionV3. The second part is the classification using three machine learning methods: K-nearest neighbor, support vector machine, and decision trees. The results of the experiments show that the proposed model using VGG19 as a feature extractor and support vector machine. It reached the highest conceivable testing accuracy with 97.4%. Moreover, the proposed model achieves a superior testing accuracy than VGG19, InceptionV3, and other related works. The obtained results are supported by performance criteria such as precision, recall, and F1 score.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
耍酷的青丝完成签到,获得积分10
1秒前
CipherSage应助小枝采纳,获得10
1秒前
zimin应助吴泽采纳,获得10
2秒前
2秒前
深情的依风完成签到,获得积分20
2秒前
赘婿应助青春理想采纳,获得10
3秒前
夏七完成签到,获得积分10
3秒前
shd-fufa发布了新的文献求助10
3秒前
3秒前
王某人完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
小张完成签到,获得积分10
4秒前
4秒前
mwiyi发布了新的文献求助10
5秒前
赵廷潇发布了新的文献求助10
5秒前
张凤完成签到,获得积分10
5秒前
华仔应助pappper采纳,获得10
5秒前
论文查询者完成签到,获得积分10
6秒前
HEHNJJ完成签到,获得积分10
6秒前
栗子发布了新的文献求助10
6秒前
7秒前
7秒前
无心。发布了新的文献求助10
8秒前
8秒前
科研小辉完成签到,获得积分10
8秒前
你霉柿吧发布了新的文献求助10
8秒前
甜甜茈完成签到 ,获得积分10
8秒前
摇瓶子的蜗牛给摇瓶子的蜗牛的求助进行了留言
9秒前
ding应助美丽梦桃采纳,获得10
9秒前
shd-fufa完成签到,获得积分10
9秒前
李健的小迷弟应助tiny_face采纳,获得10
9秒前
小马甲应助Nicole采纳,获得10
9秒前
leec完成签到,获得积分10
10秒前
钱钱完成签到,获得积分10
11秒前
赘婿应助比巴卜溪采纳,获得10
11秒前
qinkoko发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5260499
求助须知:如何正确求助?哪些是违规求助? 4421947
关于积分的说明 13764660
捐赠科研通 4296098
什么是DOI,文献DOI怎么找? 2357222
邀请新用户注册赠送积分活动 1353594
关于科研通互助平台的介绍 1314874