COVID-19 Chest X-rays Classification Through the Fusion of Deep Transfer Learning and Machine Learning Methods

人工智能 学习迁移 机器学习 支持向量机 深度学习 计算机科学 2019年冠状病毒病(COVID-19) 提取器 特征(语言学) 特征提取 工程类 医学 哲学 语言学 疾病 病理 工艺工程 传染病(医学专业)
作者
Nour Eldeen M. Khalifa,Mohamed Hamed N. Taha,Ripon K. Chakrabortty,Mohamed Loey
出处
期刊:Lecture notes on data engineering and communications technologies 卷期号:: 1-11
标识
DOI:10.1007/978-981-19-2948-9_1
摘要

One of the most challenging issues that humans face in the last decade is in the health sector, and it is threatening his existence. The COVID-19 is one of those health threats as declared by the World Health Organization (WHO). This spread of COVID-19 forced WHO to declare this virus as a pandemic in 2019. In this paper, COVID-19 chest X-rays classification through the fusion of deep transfer learning and machine learning methods will be presented. The dataset “DLAI3 Hackathon Phase3 COVID-19 CXR Challenge” is used in this research for investigation. The dataset consists of three classes of X-rays images. The classes are COVID-19, Thorax Disease, and No Finding. The proposed model is made up of two main parts. The first part for feature extraction, which is accomplished using three deep transfer learning algorithms: AlexNet, VGG19, and InceptionV3. The second part is the classification using three machine learning methods: K-nearest neighbor, support vector machine, and decision trees. The results of the experiments show that the proposed model using VGG19 as a feature extractor and support vector machine. It reached the highest conceivable testing accuracy with 97.4%. Moreover, the proposed model achieves a superior testing accuracy than VGG19, InceptionV3, and other related works. The obtained results are supported by performance criteria such as precision, recall, and F1 score.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ppf发布了新的文献求助10
刚刚
yyq完成签到,获得积分10
1秒前
张怡完成签到,获得积分10
1秒前
1秒前
Wawoo发布了新的文献求助10
1秒前
俊俏的紫菜完成签到,获得积分10
1秒前
金虎发布了新的文献求助10
1秒前
和谐续发布了新的文献求助10
2秒前
小灿发布了新的文献求助10
2秒前
faraway完成签到 ,获得积分10
2秒前
韩哈哈完成签到,获得积分10
2秒前
无所归兮完成签到,获得积分10
2秒前
Vermouth完成签到,获得积分10
2秒前
李绿真发布了新的文献求助10
3秒前
拼搏蜗牛完成签到,获得积分10
3秒前
南方周末完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
龙仔子发布了新的文献求助30
4秒前
高兴可乐发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
zyy驳回了YY应助
4秒前
5秒前
BowieHuang应助momowang采纳,获得10
5秒前
无所归兮发布了新的文献求助10
5秒前
5秒前
土豆子完成签到 ,获得积分10
5秒前
6秒前
zxh_发布了新的文献求助10
6秒前
Big_wayne完成签到,获得积分10
6秒前
顾守发布了新的文献求助10
7秒前
7秒前
迪杰斯特拉完成签到,获得积分10
7秒前
蓝蜗牛发布了新的文献求助10
8秒前
汉堡包应助zx采纳,获得10
8秒前
桐桐应助欧阳辞采纳,获得30
9秒前
9秒前
myyy发布了新的文献求助10
10秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5582358
求助须知:如何正确求助?哪些是违规求助? 4666421
关于积分的说明 14762778
捐赠科研通 4608475
什么是DOI,文献DOI怎么找? 2528699
邀请新用户注册赠送积分活动 1498050
关于科研通互助平台的介绍 1466736