Document Image Forgery Detection Based on Deep Learning Models

人工智能 计算机科学 图像(数学) 深度学习 复制 鉴定(生物学) 数字图像 图像编辑 互联网 计算机视觉 图像处理 万维网 植物 政治学 法学 生物
作者
Piaoyang Yang,Wei Fang,Feng Zhang,Lifei Bai,Yuanyuan Gao
标识
DOI:10.1109/iseeie55684.2022.00014
摘要

With the improvement of the communication speed and the popularization of the Internet, images have become the most common information medium in life. At the same time, the adverse effects of forged images in the media, credit investigation, finance and academic fields are becoming more and more significant. Therefore, in recent years, the research on forged image identification algorithms has been active worldwide. Image forgery has different classification methods. According to whether the forgery uses deep learning methods, it can be divided into deep forged images and traditional forged images. It can also be divided into ordinary image forged and document image forged according to whether the image is a text image. Different forgery methods will leave different forgery traces in the image, corresponding to different forgery identification methods. Aiming at document forgery images, this paper proposes a forgery detection algorithm based on deep learning and fusion of error level analysis (ELA) information. Compared with the previous forgery identification algorithms, the algorithm in this paper can not only identify whether the document image is forged, but can also locate the forged text area. The algorithm proposed in this paper supports the detection of document image forgery generated by cutting, copying, erasing and deep learning methods. The detection algorithm of this paper participated in the fifth forgery detection competition of Ali Tianchi and won the 32nd place among 1470 participating teams.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
he完成签到,获得积分10
1秒前
梅竹发布了新的文献求助10
1秒前
彭于彦祖应助瘦瘦的鬼神采纳,获得30
1秒前
2秒前
2秒前
wsh071117发布了新的文献求助10
2秒前
andars0828发布了新的文献求助10
3秒前
3秒前
向往完成签到,获得积分10
3秒前
junyang完成签到,获得积分10
3秒前
Hello应助随遇而安采纳,获得10
5秒前
N2完成签到,获得积分10
5秒前
LL完成签到,获得积分10
5秒前
5秒前
gsonix完成签到 ,获得积分10
6秒前
aishuye发布了新的文献求助20
6秒前
7秒前
7秒前
7秒前
7秒前
小马甲应助风趣采白采纳,获得10
7秒前
7秒前
tcmlida完成签到,获得积分10
8秒前
科研通AI2S应助skychen采纳,获得10
8秒前
东山完成签到 ,获得积分10
9秒前
谷大喵唔完成签到,获得积分20
9秒前
9秒前
水濑心源发布了新的文献求助10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
十二应助科研通管家采纳,获得10
10秒前
wang完成签到,获得积分10
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
桐桐应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
领导范儿应助科研通管家采纳,获得30
10秒前
10秒前
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969222
求助须知:如何正确求助?哪些是违规求助? 3514124
关于积分的说明 11171948
捐赠科研通 3249361
什么是DOI,文献DOI怎么找? 1794799
邀请新用户注册赠送积分活动 875431
科研通“疑难数据库(出版商)”最低求助积分说明 804779