Document Image Forgery Detection Based on Deep Learning Models

人工智能 计算机科学 图像(数学) 深度学习 复制 鉴定(生物学) 数字图像 图像编辑 互联网 计算机视觉 图像处理 万维网 植物 政治学 法学 生物
作者
Piaoyang Yang,Wei Fang,Feng Zhang,Lifei Bai,Yuanyuan Gao
标识
DOI:10.1109/iseeie55684.2022.00014
摘要

With the improvement of the communication speed and the popularization of the Internet, images have become the most common information medium in life. At the same time, the adverse effects of forged images in the media, credit investigation, finance and academic fields are becoming more and more significant. Therefore, in recent years, the research on forged image identification algorithms has been active worldwide. Image forgery has different classification methods. According to whether the forgery uses deep learning methods, it can be divided into deep forged images and traditional forged images. It can also be divided into ordinary image forged and document image forged according to whether the image is a text image. Different forgery methods will leave different forgery traces in the image, corresponding to different forgery identification methods. Aiming at document forgery images, this paper proposes a forgery detection algorithm based on deep learning and fusion of error level analysis (ELA) information. Compared with the previous forgery identification algorithms, the algorithm in this paper can not only identify whether the document image is forged, but can also locate the forged text area. The algorithm proposed in this paper supports the detection of document image forgery generated by cutting, copying, erasing and deep learning methods. The detection algorithm of this paper participated in the fifth forgery detection competition of Ali Tianchi and won the 32nd place among 1470 participating teams.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助牟百采纳,获得10
1秒前
1秒前
dsjlove完成签到,获得积分20
1秒前
小西完成签到,获得积分10
1秒前
NuLi完成签到 ,获得积分10
1秒前
Aaron发布了新的文献求助10
1秒前
goodddddddddy发布了新的文献求助10
2秒前
斯文败类应助满天星采纳,获得10
2秒前
2秒前
2秒前
3秒前
3秒前
无花果应助水博士采纳,获得10
3秒前
MOON完成签到,获得积分10
3秒前
MAIDANG发布了新的文献求助30
3秒前
4秒前
快乐的一刀完成签到,获得积分10
4秒前
巫马嫣然发布了新的文献求助30
4秒前
JIE完成签到 ,获得积分10
4秒前
4秒前
panx发布了新的文献求助10
4秒前
ccm1992完成签到,获得积分20
5秒前
标致绿柏发布了新的文献求助10
5秒前
5秒前
cy发布了新的文献求助10
5秒前
5秒前
6秒前
友好听云发布了新的文献求助10
6秒前
7秒前
leeleetyo完成签到,获得积分10
7秒前
xiaoyeken发布了新的文献求助20
8秒前
cyrong发布了新的文献求助10
8秒前
珊珊发布了新的文献求助10
9秒前
斯文败类应助ALICE采纳,获得10
9秒前
9秒前
文静的飞飞完成签到 ,获得积分10
9秒前
机灵的幻灵完成签到 ,获得积分10
9秒前
10秒前
10秒前
10秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3467389
求助须知:如何正确求助?哪些是违规求助? 3060276
关于积分的说明 9070826
捐赠科研通 2750717
什么是DOI,文献DOI怎么找? 1509378
科研通“疑难数据库(出版商)”最低求助积分说明 697277
邀请新用户注册赠送积分活动 697262