Document Image Forgery Detection Based on Deep Learning Models

人工智能 计算机科学 图像(数学) 深度学习 复制 鉴定(生物学) 数字图像 图像编辑 互联网 计算机视觉 图像处理 万维网 政治学 植物 生物 法学
作者
Piaoyang Yang,Wei Fang,Feng Zhang,Lifei Bai,Yuanyuan Gao
标识
DOI:10.1109/iseeie55684.2022.00014
摘要

With the improvement of the communication speed and the popularization of the Internet, images have become the most common information medium in life. At the same time, the adverse effects of forged images in the media, credit investigation, finance and academic fields are becoming more and more significant. Therefore, in recent years, the research on forged image identification algorithms has been active worldwide. Image forgery has different classification methods. According to whether the forgery uses deep learning methods, it can be divided into deep forged images and traditional forged images. It can also be divided into ordinary image forged and document image forged according to whether the image is a text image. Different forgery methods will leave different forgery traces in the image, corresponding to different forgery identification methods. Aiming at document forgery images, this paper proposes a forgery detection algorithm based on deep learning and fusion of error level analysis (ELA) information. Compared with the previous forgery identification algorithms, the algorithm in this paper can not only identify whether the document image is forged, but can also locate the forged text area. The algorithm proposed in this paper supports the detection of document image forgery generated by cutting, copying, erasing and deep learning methods. The detection algorithm of this paper participated in the fifth forgery detection competition of Ali Tianchi and won the 32nd place among 1470 participating teams.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyyyou发布了新的文献求助200
1秒前
周周发布了新的文献求助10
1秒前
fedehe完成签到 ,获得积分10
1秒前
MissYang完成签到,获得积分10
2秒前
2秒前
沉静早晨完成签到,获得积分10
2秒前
Rondab应助平常的傲白采纳,获得30
2秒前
汉堡包应助QZZ采纳,获得10
2秒前
汉堡包应助科研眼镜蛇采纳,获得10
2秒前
霸气的大米完成签到,获得积分10
3秒前
smottom应助slx采纳,获得20
3秒前
Deiog完成签到,获得积分10
3秒前
上官若男应助zhuzihao采纳,获得10
3秒前
漂亮的不言完成签到 ,获得积分10
4秒前
4秒前
4秒前
老十七应助starry采纳,获得10
5秒前
Cherish发布了新的文献求助10
5秒前
伶俐一曲发布了新的文献求助10
5秒前
Jasper应助lizzy采纳,获得10
5秒前
6秒前
6秒前
6秒前
英姑应助遐蝶采纳,获得10
7秒前
7秒前
foreverbigbao完成签到,获得积分10
7秒前
CipherSage应助lll采纳,获得10
8秒前
饱满以松完成签到,获得积分10
8秒前
汪汪队睡大觉完成签到,获得积分10
8秒前
9秒前
隐形曼青应助xuzhu0907采纳,获得10
10秒前
CodeCraft应助周周采纳,获得10
10秒前
爆米花应助周周采纳,获得10
10秒前
iNk应助阮楷瑞采纳,获得10
10秒前
hideyoshi发布了新的文献求助10
11秒前
11秒前
11秒前
张雯雯完成签到,获得积分10
11秒前
iNk应助hahaha采纳,获得10
12秒前
foreverbigbao发布了新的文献求助10
12秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974856
求助须知:如何正确求助?哪些是违规求助? 3519400
关于积分的说明 11198085
捐赠科研通 3255563
什么是DOI,文献DOI怎么找? 1797860
邀请新用户注册赠送积分活动 877208
科研通“疑难数据库(出版商)”最低求助积分说明 806219