Complementary characteristics fusion network for weakly supervised salient object detection

人工智能 突出 融合 对象(语法) 计算机视觉 计算机科学 模式识别(心理学) 目标检测 传感器融合 哲学 语言学
作者
Yan Liu,Yunzhou Zhang,Zhenyu Wang,Fei Yang,Cao Qin,Feng Qiu,Sonya Coleman,Dermot Kerr
出处
期刊:Image and Vision Computing [Elsevier]
卷期号:126: 104536-104536 被引量:2
标识
DOI:10.1016/j.imavis.2022.104536
摘要

Salient object detection (SOD) is a challenging and fundamental research in computer vision and image processing. Since the cost of pixel-level annotations is high, scribble annotations are usually used as weak supervisions. However, scribble annotations are too sparse and always located inside the objects with lacking annotations close to the semantic boundaries, which can't make confident predictions. To alleviate these issues, we propose a novel and effective scribble-based weakly supervised approach for SOD, named complementary characteristics fusion network (CCFNet). To be more specific, we design an edge fusion module (EFM) by taking account of local and high-level semantic information to equip our model, which would be beneficial to enhance the power of aggregating edge information. Then to achieve the complementary role of different features, a series of feature correlation modules (FCMs) are employed to strengthen the localization information and details learning. This is based on low-level, high-level global and edge information, which will complement each other to obtain relatively complete salient regions. Alternatively, to encourage the network to learn structural information and further improve the results of saliency maps in foreground and background, we propose a self-supervised salient detection (SSD) loss. Extensive experiments using five benchmark datasets demonstrate that our proposed approach performs favorably against the state-of-the-art weakly supervised algorithms, and even surpasses the performance of those fully supervised.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叶小洲发布了新的文献求助30
刚刚
Ansels发布了新的文献求助20
刚刚
雪落发布了新的文献求助10
1秒前
lcj发布了新的文献求助10
1秒前
SciGPT应助不想起床采纳,获得10
1秒前
keke发布了新的文献求助10
1秒前
jie完成签到,获得积分10
2秒前
酷炫傲安发布了新的文献求助10
2秒前
CodeCraft应助wingmay采纳,获得10
2秒前
dd发布了新的文献求助10
3秒前
共享精神应助hgdncs采纳,获得10
3秒前
wang完成签到 ,获得积分10
3秒前
Goodamii发布了新的文献求助30
4秒前
4秒前
13679165979发布了新的文献求助10
4秒前
tlggg发布了新的文献求助10
5秒前
CMUSK发布了新的文献求助10
6秒前
7秒前
7秒前
无为完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
滑稽帝完成签到,获得积分10
8秒前
8秒前
Hello应助TT采纳,获得10
9秒前
科研通AI6应助漫天采纳,获得10
9秒前
10秒前
科研通AI6应助英勇的宛筠采纳,获得10
10秒前
Wwww发布了新的文献求助10
10秒前
11秒前
123完成签到,获得积分20
11秒前
yduan完成签到,获得积分20
12秒前
独享发布了新的文献求助10
12秒前
11完成签到,获得积分10
13秒前
周周周发布了新的文献求助10
13秒前
不想起床发布了新的文献求助10
14秒前
15秒前
jelifo发布了新的文献求助10
16秒前
kevin发布了新的文献求助10
16秒前
顾矜应助doudou采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648325
求助须知:如何正确求助?哪些是违规求助? 4775345
关于积分的说明 15043906
捐赠科研通 4807336
什么是DOI,文献DOI怎么找? 2570747
邀请新用户注册赠送积分活动 1527484
关于科研通互助平台的介绍 1486437