Complementary characteristics fusion network for weakly supervised salient object detection

人工智能 突出 融合 对象(语法) 计算机视觉 计算机科学 模式识别(心理学) 目标检测 传感器融合 哲学 语言学
作者
Yan Liu,Yunzhou Zhang,Zhenyu Wang,Fei Yang,Cao Qin,Feng Qiu,Sonya Coleman,Dermot Kerr
出处
期刊:Image and Vision Computing [Elsevier]
卷期号:126: 104536-104536 被引量:2
标识
DOI:10.1016/j.imavis.2022.104536
摘要

Salient object detection (SOD) is a challenging and fundamental research in computer vision and image processing. Since the cost of pixel-level annotations is high, scribble annotations are usually used as weak supervisions. However, scribble annotations are too sparse and always located inside the objects with lacking annotations close to the semantic boundaries, which can't make confident predictions. To alleviate these issues, we propose a novel and effective scribble-based weakly supervised approach for SOD, named complementary characteristics fusion network (CCFNet). To be more specific, we design an edge fusion module (EFM) by taking account of local and high-level semantic information to equip our model, which would be beneficial to enhance the power of aggregating edge information. Then to achieve the complementary role of different features, a series of feature correlation modules (FCMs) are employed to strengthen the localization information and details learning. This is based on low-level, high-level global and edge information, which will complement each other to obtain relatively complete salient regions. Alternatively, to encourage the network to learn structural information and further improve the results of saliency maps in foreground and background, we propose a self-supervised salient detection (SSD) loss. Extensive experiments using five benchmark datasets demonstrate that our proposed approach performs favorably against the state-of-the-art weakly supervised algorithms, and even surpasses the performance of those fully supervised.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
彭于彦祖应助吱吱采纳,获得30
2秒前
清脆的飞丹完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
3秒前
4秒前
bsnc完成签到,获得积分10
4秒前
恩希玛发布了新的文献求助10
5秒前
小王发布了新的文献求助10
5秒前
zzh319发布了新的文献求助10
6秒前
一木张发布了新的文献求助10
6秒前
Frida发布了新的文献求助10
7秒前
7秒前
无望发布了新的文献求助10
7秒前
bkagyin应助wangdafa采纳,获得10
7秒前
mic完成签到,获得积分20
8秒前
月落完成签到,获得积分20
8秒前
上官若男应助2025采纳,获得30
9秒前
上官若男应助上进生采纳,获得10
10秒前
10秒前
小马甲应助Yulin Yu采纳,获得10
10秒前
哈哈哈发布了新的文献求助10
11秒前
ny960完成签到,获得积分10
11秒前
莱雅lyre完成签到,获得积分10
11秒前
999发布了新的文献求助10
11秒前
充电宝应助孙璧宬采纳,获得10
12秒前
dandan发布了新的文献求助10
12秒前
12秒前
东东完成签到,获得积分20
13秒前
13秒前
mic发布了新的文献求助30
13秒前
14秒前
14秒前
恩希玛完成签到,获得积分20
14秒前
yiyouwei完成签到,获得积分10
15秒前
15秒前
小王发布了新的文献求助10
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156450
求助须知:如何正确求助?哪些是违规求助? 2807921
关于积分的说明 7875266
捐赠科研通 2466226
什么是DOI,文献DOI怎么找? 1312727
科研通“疑难数据库(出版商)”最低求助积分说明 630255
版权声明 601919