亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning based multi-labelled soil classification and empirical estimation toward sustainable agriculture

人工智能 计算机科学 机器学习 深度学习 支持向量机 特征选择 随机森林 阿达布思 朴素贝叶斯分类器 精准农业 集成学习 模式识别(心理学) 农业 生态学 生物
作者
J. Padmapriya,T. Sasilatha
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:119: 105690-105690 被引量:26
标识
DOI:10.1016/j.engappai.2022.105690
摘要

Agriculture is the underlying occupation of the vast people in India and it is a major economic contribution. Soil is prime for the vital nutrient supply to the crops and its yield. Determination of the type of soil which comprises of the clay, sand and silt particles in the respective proportion is indeed significant for the suitable crop selection and to identify the weeds growth. The most commonly utilized soil determination methods were International Pipette method and Pressure-plate apparatus method. In this research work, multiclass soil classification using machine learning and deep learning models for the appropriate determination of the soil type as Multi-Stacking ensemble model and a novel feature selection algorithm Q-HOG is proposed; since the Artificial Intelligence has led to furtherance in the smart agriculture. Besides, the images are collected from the exploration site vriddhachalam along with the soil datasets will increase the classification accuracy. The deep learning models Recurrent Neural Network(RNN), Long Short Term Memory(LSTM), Gated Recurrent Unit(GRU) and VGG16 are considered and the comprehensive evaluation of these different deep learning architectures and also the machine learning algorithms such as Naïve-bayes, KNN, SVM are carried out and the obtained results are tabulated. Multi-stacking ensemble model for multi-classification is proposed with the Machine learning and deep learning algorithms and evaluated the performance with increased computation time. Among these models the proposed model outperformed in soil classification in-terms of accuracy as 98.96 percent, achieved precision as 96.14 percent, recall as 99.65 percent and the achieved F1-Score is 97.87 percent.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
16秒前
24秒前
ding应助科研通管家采纳,获得10
28秒前
爆米花应助科研通管家采纳,获得10
28秒前
Jasper应助难过忆山采纳,获得10
41秒前
41秒前
58秒前
1分钟前
难过忆山发布了新的文献求助10
1分钟前
难过忆山完成签到,获得积分10
2分钟前
善学以致用应助难过忆山采纳,获得10
2分钟前
Scheduling完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
huenguyenvan完成签到,获得积分10
2分钟前
2分钟前
Fluoxtine发布了新的文献求助10
2分钟前
3分钟前
科研通AI6.1应助twk采纳,获得10
3分钟前
赘婿应助11采纳,获得10
3分钟前
Milo完成签到,获得积分10
3分钟前
3分钟前
tishe7发布了新的文献求助10
3分钟前
tishe7完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
4分钟前
星辰大海应助科研通管家采纳,获得10
4分钟前
4分钟前
英姑应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
嘻嘻完成签到,获得积分10
5分钟前
李健的小迷弟应助炸薯条采纳,获得10
5分钟前
5分钟前
5分钟前
炸薯条发布了新的文献求助10
5分钟前
炸薯条完成签到,获得积分10
5分钟前
5分钟前
千诺完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788683
求助须知:如何正确求助?哪些是违规求助? 5710419
关于积分的说明 15473796
捐赠科研通 4916665
什么是DOI,文献DOI怎么找? 2646504
邀请新用户注册赠送积分活动 1594185
关于科研通互助平台的介绍 1548612