亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning based multi-labelled soil classification and empirical estimation toward sustainable agriculture

人工智能 计算机科学 机器学习 深度学习 支持向量机 特征选择 随机森林 阿达布思 朴素贝叶斯分类器 精准农业 集成学习 模式识别(心理学) 农业 生态学 生物
作者
J. Padmapriya,T. Sasilatha
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:119: 105690-105690 被引量:26
标识
DOI:10.1016/j.engappai.2022.105690
摘要

Agriculture is the underlying occupation of the vast people in India and it is a major economic contribution. Soil is prime for the vital nutrient supply to the crops and its yield. Determination of the type of soil which comprises of the clay, sand and silt particles in the respective proportion is indeed significant for the suitable crop selection and to identify the weeds growth. The most commonly utilized soil determination methods were International Pipette method and Pressure-plate apparatus method. In this research work, multiclass soil classification using machine learning and deep learning models for the appropriate determination of the soil type as Multi-Stacking ensemble model and a novel feature selection algorithm Q-HOG is proposed; since the Artificial Intelligence has led to furtherance in the smart agriculture. Besides, the images are collected from the exploration site vriddhachalam along with the soil datasets will increase the classification accuracy. The deep learning models Recurrent Neural Network(RNN), Long Short Term Memory(LSTM), Gated Recurrent Unit(GRU) and VGG16 are considered and the comprehensive evaluation of these different deep learning architectures and also the machine learning algorithms such as Naïve-bayes, KNN, SVM are carried out and the obtained results are tabulated. Multi-stacking ensemble model for multi-classification is proposed with the Machine learning and deep learning algorithms and evaluated the performance with increased computation time. Among these models the proposed model outperformed in soil classification in-terms of accuracy as 98.96 percent, achieved precision as 96.14 percent, recall as 99.65 percent and the achieved F1-Score is 97.87 percent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Vivian发布了新的文献求助30
3秒前
Fox完成签到,获得积分10
8秒前
科研通AI2S应助魏欣娜采纳,获得10
11秒前
11秒前
维颖完成签到,获得积分10
13秒前
26秒前
30秒前
31秒前
zhvjdb发布了新的文献求助10
35秒前
Raju发布了新的文献求助100
38秒前
英姑应助lpy李采纳,获得10
38秒前
44秒前
zhvjdb完成签到,获得积分10
48秒前
Yuuw发布了新的文献求助10
49秒前
bastien驳回了xxfsx应助
49秒前
50秒前
50秒前
Huzhu应助魏欣娜采纳,获得10
57秒前
科研通AI6应助科研通管家采纳,获得10
57秒前
浮游应助科研通管家采纳,获得30
57秒前
浮游应助科研通管家采纳,获得10
57秒前
浮游应助科研通管家采纳,获得10
57秒前
华仔应助科研通管家采纳,获得10
57秒前
Yuuw完成签到,获得积分10
58秒前
1分钟前
Sherry发布了新的文献求助20
1分钟前
充电宝应助青柠采纳,获得10
1分钟前
科研通AI2S应助魏欣娜采纳,获得10
1分钟前
1分钟前
1分钟前
33发布了新的文献求助10
1分钟前
1分钟前
田様应助yydcmnyxx采纳,获得30
1分钟前
1分钟前
RNATx完成签到,获得积分10
1分钟前
lpy李发布了新的文献求助10
1分钟前
lcxw1224完成签到,获得积分10
1分钟前
科目三应助Sherry采纳,获得10
1分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482272
求助须知:如何正确求助?哪些是违规求助? 4583190
关于积分的说明 14388849
捐赠科研通 4512197
什么是DOI,文献DOI怎么找? 2472722
邀请新用户注册赠送积分活动 1459016
关于科研通互助平台的介绍 1432418