Deep learning based multi-labelled soil classification and empirical estimation toward sustainable agriculture

人工智能 计算机科学 机器学习 深度学习 支持向量机 特征选择 随机森林 阿达布思 朴素贝叶斯分类器 精准农业 集成学习 模式识别(心理学) 农业 生态学 生物
作者
J. Padmapriya,T. Sasilatha
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:119: 105690-105690 被引量:22
标识
DOI:10.1016/j.engappai.2022.105690
摘要

Agriculture is the underlying occupation of the vast people in India and it is a major economic contribution. Soil is prime for the vital nutrient supply to the crops and its yield. Determination of the type of soil which comprises of the clay, sand and silt particles in the respective proportion is indeed significant for the suitable crop selection and to identify the weeds growth. The most commonly utilized soil determination methods were International Pipette method and Pressure-plate apparatus method. In this research work, multiclass soil classification using machine learning and deep learning models for the appropriate determination of the soil type as Multi-Stacking ensemble model and a novel feature selection algorithm Q-HOG is proposed; since the Artificial Intelligence has led to furtherance in the smart agriculture. Besides, the images are collected from the exploration site vriddhachalam along with the soil datasets will increase the classification accuracy. The deep learning models Recurrent Neural Network(RNN), Long Short Term Memory(LSTM), Gated Recurrent Unit(GRU) and VGG16 are considered and the comprehensive evaluation of these different deep learning architectures and also the machine learning algorithms such as Naïve-bayes, KNN, SVM are carried out and the obtained results are tabulated. Multi-stacking ensemble model for multi-classification is proposed with the Machine learning and deep learning algorithms and evaluated the performance with increased computation time. Among these models the proposed model outperformed in soil classification in-terms of accuracy as 98.96 percent, achieved precision as 96.14 percent, recall as 99.65 percent and the achieved F1-Score is 97.87 percent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海东南发布了新的文献求助10
1秒前
魅傲发布了新的文献求助10
2秒前
张洁发布了新的文献求助10
3秒前
小千发布了新的文献求助10
4秒前
6秒前
TTT0530发布了新的文献求助10
6秒前
宁ning发布了新的文献求助10
7秒前
星辰大海应助双鱼采纳,获得10
7秒前
夏尔酱完成签到,获得积分10
8秒前
9秒前
张洁完成签到,获得积分20
9秒前
77777完成签到,获得积分10
9秒前
yoyo完成签到,获得积分10
10秒前
Nancy发布了新的文献求助200
10秒前
坚强元枫完成签到,获得积分10
11秒前
鳗鱼邪欢关注了科研通微信公众号
12秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
shae_2022应助科研通管家采纳,获得10
13秒前
丘比特应助科研通管家采纳,获得10
13秒前
汉堡包应助科研通管家采纳,获得10
14秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
SciGPT应助科研通管家采纳,获得10
14秒前
14秒前
大模型应助科研通管家采纳,获得10
14秒前
15秒前
正科完成签到,获得积分10
15秒前
15秒前
licomen发布了新的文献求助10
17秒前
hoshi1018发布了新的文献求助10
20秒前
双鱼完成签到,获得积分10
24秒前
25秒前
充电宝应助正科采纳,获得10
28秒前
beibei发布了新的文献求助10
29秒前
31秒前
慧19960418发布了新的文献求助10
32秒前
思源应助juan采纳,获得10
32秒前
34秒前
34秒前
35秒前
善学以致用应助小千采纳,获得10
36秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3055373
求助须知:如何正确求助?哪些是违规求助? 2712154
关于积分的说明 7429854
捐赠科研通 2356935
什么是DOI,文献DOI怎么找? 1248350
科研通“疑难数据库(出版商)”最低求助积分说明 606700
版权声明 596093