Deep learning based multi-labelled soil classification and empirical estimation toward sustainable agriculture

人工智能 计算机科学 机器学习 深度学习 支持向量机 特征选择 随机森林 阿达布思 朴素贝叶斯分类器 精准农业 集成学习 模式识别(心理学) 农业 生态学 生物
作者
J. Padmapriya,T. Sasilatha
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:119: 105690-105690 被引量:26
标识
DOI:10.1016/j.engappai.2022.105690
摘要

Agriculture is the underlying occupation of the vast people in India and it is a major economic contribution. Soil is prime for the vital nutrient supply to the crops and its yield. Determination of the type of soil which comprises of the clay, sand and silt particles in the respective proportion is indeed significant for the suitable crop selection and to identify the weeds growth. The most commonly utilized soil determination methods were International Pipette method and Pressure-plate apparatus method. In this research work, multiclass soil classification using machine learning and deep learning models for the appropriate determination of the soil type as Multi-Stacking ensemble model and a novel feature selection algorithm Q-HOG is proposed; since the Artificial Intelligence has led to furtherance in the smart agriculture. Besides, the images are collected from the exploration site vriddhachalam along with the soil datasets will increase the classification accuracy. The deep learning models Recurrent Neural Network(RNN), Long Short Term Memory(LSTM), Gated Recurrent Unit(GRU) and VGG16 are considered and the comprehensive evaluation of these different deep learning architectures and also the machine learning algorithms such as Naïve-bayes, KNN, SVM are carried out and the obtained results are tabulated. Multi-stacking ensemble model for multi-classification is proposed with the Machine learning and deep learning algorithms and evaluated the performance with increased computation time. Among these models the proposed model outperformed in soil classification in-terms of accuracy as 98.96 percent, achieved precision as 96.14 percent, recall as 99.65 percent and the achieved F1-Score is 97.87 percent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
malubest发布了新的文献求助10
刚刚
杭啊发布了新的文献求助10
刚刚
xiaomili发布了新的文献求助10
刚刚
刚刚
刚刚
1秒前
JHL完成签到,获得积分10
1秒前
qq16发布了新的文献求助10
1秒前
Dotgene完成签到,获得积分10
1秒前
小芙爱雪碧完成签到 ,获得积分10
1秒前
1秒前
孙福禄应助quan采纳,获得10
2秒前
2秒前
Mzhao完成签到,获得积分10
3秒前
3秒前
3秒前
疯狂的虔完成签到,获得积分10
3秒前
5秒前
CipherSage应助右右采纳,获得10
5秒前
玉衡发布了新的文献求助10
5秒前
yao chen完成签到,获得积分10
5秒前
朵拉完成签到,获得积分10
5秒前
由清涟完成签到,获得积分10
6秒前
Drhan完成签到,获得积分10
6秒前
FashionBoy应助断数循环采纳,获得10
6秒前
姣妹崽完成签到,获得积分10
6秒前
马一凡完成签到,获得积分0
6秒前
上官若男应助lan199623采纳,获得10
7秒前
俗人完成签到,获得积分10
7秒前
cangye发布了新的文献求助10
7秒前
Dotgene发布了新的文献求助10
7秒前
wanci应助CO2采纳,获得10
7秒前
joker发布了新的文献求助10
7秒前
SciGPT应助小超采纳,获得10
7秒前
7秒前
malubest完成签到,获得积分10
8秒前
华仔应助朴素的玫瑰采纳,获得30
8秒前
开心的饼干完成签到,获得积分10
9秒前
不会搞科研完成签到,获得积分0
9秒前
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600