A Systematic Review of Echo State Networks From Design to Application

计算机科学 Echo(通信协议) 国家(计算机科学) 算法 计算机安全
作者
Chenxi Sun,Moxian Song,Derun Cai,Baofeng Zhang,Shenda Hong,Hongyan Li
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:5 (1): 23-37 被引量:32
标识
DOI:10.1109/tai.2022.3225780
摘要

A recurrent neural network (RNN) has demonstrated its outstanding ability in sequence tasks and has achieved state of the art in many applications, such as industrial and medical. An echo state network (ESN) is a simple type of RNN and has emerged in the last decade as an alternative to gradient descent training-based RNN. The ESN is practical, conceptually simple, and easy to implement with a strong theoretical ground. It can avoid nonconverging and computationally expensive issues in gradient descent RNN methods. Since the ESN was put forward in 2002, abundant existing works have promoted the progress of ESN, and the recently introduced deep ESN opened the way to uniting the merits of deep learning and reservoir computing. Besides, the combinations of ESNs with other machine learning models have also overperformed baselines in some applications. However, the apparent simplicity of ESNs can sometimes be deceptive. Successfully applying ESNs needs some experience. Thus, we reviewed over 300 related papers and provided a systematic overview for the first time. In this article, we categorize the related methods into classical ESN, DeepESN, and combination. Then, we analyze them from the perspective of network designs and specific applications. Finally, we discuss the challenges and opportunities by proposing open problems and future work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Derik完成签到,获得积分10
刚刚
布溜完成签到,获得积分10
1秒前
1秒前
1eader1完成签到,获得积分10
1秒前
1秒前
BaiX完成签到,获得积分10
1秒前
孙福禄应助victory_liu采纳,获得10
1秒前
1秒前
cecilycen完成签到,获得积分10
2秒前
beikou完成签到,获得积分20
2秒前
琦琦完成签到,获得积分10
2秒前
guojing1321完成签到,获得积分10
2秒前
Derik发布了新的文献求助10
2秒前
狂风阿来完成签到 ,获得积分10
3秒前
whitedawn完成签到 ,获得积分10
3秒前
郭正霄完成签到,获得积分10
3秒前
3秒前
linciko完成签到,获得积分10
3秒前
火星上的雨柏完成签到 ,获得积分10
4秒前
大方芾发布了新的文献求助10
4秒前
东木应助江屿采纳,获得20
4秒前
苦雨完成签到,获得积分10
4秒前
领导范儿应助我迷了鹿采纳,获得10
5秒前
guojing1321发布了新的文献求助10
5秒前
啦啦啦完成签到,获得积分10
5秒前
TuT完成签到,获得积分10
5秒前
爱听歌的夏烟完成签到,获得积分10
6秒前
英姑应助yyl采纳,获得10
6秒前
deadman发布了新的文献求助10
6秒前
布溜发布了新的文献求助10
6秒前
7秒前
7秒前
hahage完成签到,获得积分10
7秒前
沐风完成签到,获得积分20
7秒前
YJ完成签到,获得积分10
8秒前
8秒前
selena完成签到,获得积分20
8秒前
163发布了新的文献求助10
8秒前
机灵一兰发布了新的文献求助10
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582