Validation of a predictive model for coronary artery disease in patients with diabetes

医学 列线图 冠状动脉疾病 接收机工作特性 布里氏评分 糖尿病 置信区间 逻辑回归 内科学 单变量 优势比 曲线下面积 计算机辅助设计 多元统计 心脏病学 急诊医学 机器学习 工程类 内分泌学 工程制图 计算机科学
作者
Junhong Xu,Qiongrui Zhao,Juan Li,Youhua Yuan,Xingguo Cao,Xueyan Zhang,Fang Jia,Wenjuan Yan,Baoya Wang,Yi Li,Yingjie Chu
出处
期刊:Journal of Cardiovascular Medicine [Lippincott Williams & Wilkins]
卷期号:24 (1): 36-43 被引量:2
标识
DOI:10.2459/jcm.0000000000001387
摘要

Background No reliable model can currently be used for predicting coronary artery disease (CAD) occurrence in patients with diabetes. We developed and validated a model predicting the occurrence of CAD in these patients. Methods We retrospectively enrolled patients with diabetes at Henan Provincial People's Hospital between 1 January 2020 and 10 June 2020, and collected data including demographics, physical examination results, laboratory test results, and diagnostic information from their medical records. The training set included patients ( n = 1152) enrolled before 15 May 2020, and the validation set included the remaining patients ( n = 238). Univariate and multivariate logistic regression analyses were performed in the training set to develop a predictive model, which were visualized using a nomogram. The model's performance was assessed by area under the receiver-operating characteristic curve (AUC) and Brier scores for both data sets. Results Sex, diabetes duration, low-density lipoprotein, creatinine, high-density lipoprotein, hypertension, and heart rate were CAD predictors in diabetes patients. The model's AUC and Brier score were 0.753 [95% confidence interval (CI) 0.727–0.778] and 0.152, respectively, and 0.738 (95% CI 0.678–0.793) and 0.172, respectively, in the training and validation sets, respectively. Conclusions Our model demonstrated favourable performance; thus, it can effectively predict CAD occurrence in diabetes patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
q792309106发布了新的文献求助10
1秒前
1秒前
Liufgui应助tyj采纳,获得20
1秒前
2秒前
Dicy发布了新的文献求助10
2秒前
3秒前
高贵白凝发布了新的文献求助10
3秒前
charles发布了新的文献求助20
4秒前
DBY发布了新的文献求助10
5秒前
考虑考虑发布了新的文献求助10
6秒前
GET完成签到,获得积分10
7秒前
QQQ完成签到,获得积分10
7秒前
8秒前
8秒前
司空豁发布了新的文献求助10
9秒前
9秒前
10秒前
11秒前
12秒前
嘘嘘发布了新的文献求助10
13秒前
14秒前
科研通AI5应助幽壑之潜蛟采纳,获得10
14秒前
ZZ发布了新的文献求助10
14秒前
15秒前
高贵白凝完成签到,获得积分10
16秒前
十八完成签到,获得积分10
16秒前
李健的小迷弟应助lee1984612采纳,获得10
17秒前
旅行者发布了新的文献求助10
18秒前
长安发布了新的文献求助10
19秒前
CodeCraft应助DBY采纳,获得10
19秒前
大个应助DBY采纳,获得10
19秒前
19秒前
19秒前
21秒前
21秒前
21秒前
22秒前
从不内卷发布了新的文献求助10
23秒前
Mercury完成签到,获得积分20
23秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979584
求助须知:如何正确求助?哪些是违规求助? 3523532
关于积分的说明 11217894
捐赠科研通 3261031
什么是DOI,文献DOI怎么找? 1800369
邀请新用户注册赠送积分活动 879064
科研通“疑难数据库(出版商)”最低求助积分说明 807152