Data augmentation for medical imaging: A systematic literature review

计算机科学 人工智能 机器学习 深度学习 任务(项目管理) 医学影像学 集合(抽象数据类型) 分割 数据集 数据科学 经济 管理 程序设计语言
作者
Fabio Garcea,Alessio Serra,Fabrizio Lamberti,Lia Morra
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:152: 106391-106391 被引量:165
标识
DOI:10.1016/j.compbiomed.2022.106391
摘要

Recent advances in Deep Learning have largely benefited from larger and more diverse training sets. However, collecting large datasets for medical imaging is still a challenge due to privacy concerns and labeling costs. Data augmentation makes it possible to greatly expand the amount and variety of data available for training without actually collecting new samples. Data augmentation techniques range from simple yet surprisingly effective transformations such as cropping, padding, and flipping, to complex generative models. Depending on the nature of the input and the visual task, different data augmentation strategies are likely to perform differently. For this reason, it is conceivable that medical imaging requires specific augmentation strategies that generate plausible data samples and enable effective regularization of deep neural networks. Data augmentation can also be used to augment specific classes that are underrepresented in the training set, e.g., to generate artificial lesions. The goal of this systematic literature review is to investigate which data augmentation strategies are used in the medical domain and how they affect the performance of clinical tasks such as classification, segmentation, and lesion detection. To this end, a comprehensive analysis of more than 300 articles published in recent years (2018–2022) was conducted. The results highlight the effectiveness of data augmentation across organs, modalities, tasks, and dataset sizes, and suggest potential avenues for future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助伶俐的觅海采纳,获得10
4秒前
7秒前
8秒前
郁李完成签到,获得积分10
8秒前
hujialiang完成签到,获得积分10
10秒前
我嘞个豆应助TTiger007采纳,获得10
11秒前
11秒前
gdpu_omics完成签到,获得积分20
11秒前
郑宇航发布了新的文献求助10
12秒前
14秒前
灰鸽舞发布了新的文献求助10
14秒前
15秒前
16秒前
16秒前
17秒前
20秒前
20秒前
20秒前
Ava应助科研通管家采纳,获得10
20秒前
猪猪hero应助科研通管家采纳,获得10
20秒前
猪猪hero应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
21秒前
wu8577应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
时尚战斗机应助青春采纳,获得10
21秒前
chaohuiwang发布了新的文献求助10
22秒前
狗头发布了新的文献求助10
22秒前
23秒前
高山我梦发布了新的文献求助10
24秒前
任然完成签到,获得积分10
24秒前
搬砖发布了新的文献求助10
25秒前
nanan完成签到,获得积分10
25秒前
小悟空的美好年华完成签到 ,获得积分10
27秒前
chaohuiwang完成签到,获得积分10
27秒前
冷傲凝琴发布了新的文献求助10
27秒前
齐桓公发布了新的文献求助10
29秒前
gdpu_omics发布了新的文献求助10
29秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962523
求助须知:如何正确求助?哪些是违规求助? 3508549
关于积分的说明 11141583
捐赠科研通 3241262
什么是DOI,文献DOI怎么找? 1791486
邀请新用户注册赠送积分活动 872876
科研通“疑难数据库(出版商)”最低求助积分说明 803474