Intelligent Hyperparameter-Tuned Deep Learning-Based Android Malware Detection and Classification Model

Android(操作系统) 计算机科学 恶意软件 机器学习 超参数 人工智能 Android恶意软件 操作系统
作者
Rincy Raphael,P. Mathiyalagan
出处
期刊:Journal of Circuits, Systems, and Computers [World Scientific]
卷期号:32 (11) 被引量:6
标识
DOI:10.1142/s0218126623501918
摘要

Recently, Android applications have been playing a vital part in the everyday life as several services are offered via mobile applications. Due of its market dominance, Android is more at danger from malicious software, and this threat is growing. The exponential growth of malicious Android apps has made it essential to develop cutting-edge methods for identifying them. Despite the prevalence of a number of security-based approaches in the research, feature selection (FS) methods for Android malware detection methods still have to be developed. In this research, researchers provide a method for distinguishing malicious Android apps from legitimate ones by using a intelligent hyperparameter tuned deep learning based malware detection (IHPT-DLMD). Extraction of features and preliminary data processing are the main functions of the IHPT-DLMD method. The proposed IHPT-DLMD technique initially aims to determine the considerable permissions and API calls using the binary coyote optimization algorithm (BCOA)-based FS technique, which aids to remove the unnecessary features. Besides, bidirectional long short-term memory (Bi-LSTM) model is employed for the detection and classification of Android malware. Finally, the glowworm swarm optimization (GSO) algorithm is applied to optimize the hyperparameters of the BiLSTM model to produce effectual outcomes for Android application classification. This IHPT-DLMD method is checked for quality using a benchmark dataset and evaluated in several ways. The test data demonstrated overall higher performance of the IHPT-DLMD methodology in comparison to the most contemporary methods that are currently in use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
faiting发布了新的文献求助10
刚刚
阿圆完成签到,获得积分20
刚刚
cc2064发布了新的文献求助10
刚刚
刚刚
320me666完成签到,获得积分10
1秒前
1秒前
归尘应助XS_QI采纳,获得10
1秒前
杨小么发布了新的文献求助10
1秒前
活力乐萱发布了新的文献求助10
1秒前
2秒前
开心蘑菇应助xdc采纳,获得10
2秒前
up发布了新的文献求助10
3秒前
刘岩松完成签到,获得积分10
3秒前
企鹅大王发布了新的文献求助10
3秒前
woiwxx发布了新的文献求助10
4秒前
schen完成签到,获得积分10
4秒前
Haley完成签到 ,获得积分0
5秒前
CodeCraft应助闫富扬采纳,获得10
6秒前
7秒前
田様应助JoshuaChen采纳,获得10
7秒前
假发君完成签到,获得积分10
7秒前
Akim应助地大空天采纳,获得10
8秒前
8秒前
jianjian完成签到,获得积分10
8秒前
华仔应助无糖零脂采纳,获得10
9秒前
灵巧的荔枝完成签到,获得积分10
9秒前
woiwxx完成签到,获得积分20
9秒前
无敌周周姐完成签到,获得积分10
9秒前
111222333完成签到 ,获得积分10
10秒前
脑洞疼应助粗心的雅绿采纳,获得10
10秒前
10秒前
10秒前
10秒前
12秒前
12秒前
火星上的糖豆完成签到,获得积分10
12秒前
桐桐应助Mikecheng采纳,获得10
13秒前
无奈行恶应助笨笨的之柔采纳,获得10
13秒前
huyuan发布了新的文献求助10
13秒前
Sandro完成签到,获得积分10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582