Developing and evaluating a machine-learning-based algorithm to predict the incidence and severity of ARDS with continuous non-invasive parameters from ordinary monitors and ventilators

急性呼吸窘迫综合征 医学 急性呼吸窘迫 入射(几何) 机械通风 机器学习 接收机工作特性 病历 算法 重症监护医学 急诊医学 计算机科学 外科 数学 内科学 几何学
作者
Wenzhu Wu,Yalin Wang,Junquan Tang,Ming Yu,Jing Yuan,Guang Zhang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:230: 107328-107328 被引量:7
标识
DOI:10.1016/j.cmpb.2022.107328
摘要

Major observational studies report that the mortality rate of acute respiratory distress syndrome (ARDS) is close to 40%. Different treatment strategies are required for each patient, according to the degree of ARDS. Early prediction of ARDS is helpful to implement targeted drug therapy and mechanical ventilation strategies for patients with different degrees of potential ARDS. In this paper, a new dynamic prediction machine learning model for ARDS incidence and severity is established and evaluated based on 28 parameters from ordinary monitors and ventilators, capable of dynamic prediction of the incidence and severity of ARDS. This new method is expected to meet the clinical practice requirements of user-friendliness and timeliness for wider application.A total of 4738 hospitalized patients who required ICU care from 159 hospitals are employed in this study. The models are trained by standardized data from electronic medical records. There are 28 structured, continuous non-invasive parameters that are recorded every hour. Seven machine learning models using only continuous, non-invasive parameters are developed for dynamic prediction and compared with methods trained by complete parameters and the traditional risk adjustment method (i.e., oxygenation saturation index method).The optimal prediction performance (area under the curve) of the ARDS incidence and severity prediction models built using continuous noninvasive parameters reached0.8691 and 0.7765, respectively. In terms of mild and severe ARDS prediction, the AUC values are both above 0.85. The performance of the model using only continuous non-invasive parameters have an AUC of 0.0133 lower, in comparison with that employing a complete feature set, including continuous non-invasive parameters, demographic information, laboratory parameters and clinical natural language text.A machine learning method was developed in this study using only continuous non-invasive parameters for ARDS incidence and severity prediction. Because the continuous non-invasive parameters can be easily obtained from ordinary monitors and ventilators, the method presented in this study is friendly and convenient to use. It is expected to be applied in pre-hospital setting for early ARDS warning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yaqin@9909发布了新的文献求助20
刚刚
1秒前
HH发布了新的文献求助10
1秒前
3秒前
3秒前
4秒前
遇见完成签到,获得积分10
5秒前
6秒前
7秒前
cx发布了新的文献求助10
7秒前
8秒前
Hou完成签到,获得积分10
8秒前
星辰大海应助少7一点8采纳,获得10
10秒前
研友_8Y05PZ发布了新的文献求助10
10秒前
wl发布了新的文献求助10
10秒前
乐观耳机发布了新的文献求助10
11秒前
Polymer72发布了新的文献求助30
11秒前
11秒前
12秒前
13秒前
刻苦的采文完成签到,获得积分10
14秒前
大个应助科研小狗采纳,获得10
14秒前
夏xia完成签到 ,获得积分10
15秒前
15秒前
黎某发布了新的文献求助10
16秒前
乐乐应助九湘采纳,获得10
18秒前
VDC应助科研通管家采纳,获得30
19秒前
斯文败类应助科研通管家采纳,获得10
19秒前
小蘑菇应助科研通管家采纳,获得10
19秒前
小蘑菇应助科研通管家采纳,获得10
19秒前
任性亚男发布了新的文献求助10
19秒前
搜集达人应助科研通管家采纳,获得10
20秒前
淡然平灵应助科研通管家采纳,获得10
20秒前
Polymer72应助科研通管家采纳,获得20
20秒前
李健应助科研通管家采纳,获得10
20秒前
云游的莫冷完成签到,获得积分20
20秒前
wanci应助科研通管家采纳,获得10
20秒前
深情安青应助科研通管家采纳,获得10
20秒前
Polymer72应助科研通管家采纳,获得20
20秒前
20秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343724
求助须知:如何正确求助?哪些是违规求助? 2970818
关于积分的说明 8645183
捐赠科研通 2650861
什么是DOI,文献DOI怎么找? 1451506
科研通“疑难数据库(出版商)”最低求助积分说明 672145
邀请新用户注册赠送积分活动 661650