Developing and evaluating a machine-learning-based algorithm to predict the incidence and severity of ARDS with continuous non-invasive parameters from ordinary monitors and ventilators

急性呼吸窘迫综合征 医学 急性呼吸窘迫 入射(几何) 机械通风 机器学习 接收机工作特性 病历 算法 重症监护医学 急诊医学 计算机科学 外科 数学 内科学 几何学
作者
Wenzhu Wu,Yalin Wang,Junquan Tang,Ming Yu,Jing Yuan,Guang Zhang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:230: 107328-107328 被引量:7
标识
DOI:10.1016/j.cmpb.2022.107328
摘要

Major observational studies report that the mortality rate of acute respiratory distress syndrome (ARDS) is close to 40%. Different treatment strategies are required for each patient, according to the degree of ARDS. Early prediction of ARDS is helpful to implement targeted drug therapy and mechanical ventilation strategies for patients with different degrees of potential ARDS. In this paper, a new dynamic prediction machine learning model for ARDS incidence and severity is established and evaluated based on 28 parameters from ordinary monitors and ventilators, capable of dynamic prediction of the incidence and severity of ARDS. This new method is expected to meet the clinical practice requirements of user-friendliness and timeliness for wider application.A total of 4738 hospitalized patients who required ICU care from 159 hospitals are employed in this study. The models are trained by standardized data from electronic medical records. There are 28 structured, continuous non-invasive parameters that are recorded every hour. Seven machine learning models using only continuous, non-invasive parameters are developed for dynamic prediction and compared with methods trained by complete parameters and the traditional risk adjustment method (i.e., oxygenation saturation index method).The optimal prediction performance (area under the curve) of the ARDS incidence and severity prediction models built using continuous noninvasive parameters reached0.8691 and 0.7765, respectively. In terms of mild and severe ARDS prediction, the AUC values are both above 0.85. The performance of the model using only continuous non-invasive parameters have an AUC of 0.0133 lower, in comparison with that employing a complete feature set, including continuous non-invasive parameters, demographic information, laboratory parameters and clinical natural language text.A machine learning method was developed in this study using only continuous non-invasive parameters for ARDS incidence and severity prediction. Because the continuous non-invasive parameters can be easily obtained from ordinary monitors and ventilators, the method presented in this study is friendly and convenient to use. It is expected to be applied in pre-hospital setting for early ARDS warning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
木木完成签到 ,获得积分10
1秒前
Hello应助研友_EZ1GJL采纳,获得20
3秒前
onlyan完成签到,获得积分10
3秒前
Orange应助爱睡觉的李星河采纳,获得10
4秒前
4秒前
CHENG_2025应助雪蛤采纳,获得10
5秒前
7秒前
7秒前
树袋发布了新的文献求助10
8秒前
smottom应助Junewang采纳,获得10
8秒前
花老美发布了新的文献求助10
9秒前
吴彦祖发布了新的文献求助10
10秒前
仰望星空应助DENG采纳,获得20
11秒前
redking完成签到,获得积分10
11秒前
12秒前
Akim应助十六采纳,获得10
13秒前
13秒前
阿橘完成签到,获得积分10
15秒前
15秒前
16秒前
17秒前
鱼会淹死吗完成签到,获得积分10
17秒前
兴奋奇异果完成签到,获得积分10
17秒前
英俊的铭应助魏冰采纳,获得10
18秒前
胡杨柳完成签到,获得积分10
18秒前
18秒前
SYLH应助Gtingting采纳,获得10
19秒前
可爱的函函应助wowozyy采纳,获得10
19秒前
赘婿应助吴彦祖采纳,获得10
20秒前
20秒前
20秒前
cyl发布了新的文献求助10
20秒前
学术小垃圾完成签到,获得积分10
20秒前
21秒前
makabaka发布了新的文献求助10
21秒前
22秒前
嘻嘻汐泽发布了新的文献求助10
23秒前
23秒前
诚心凝旋完成签到 ,获得积分10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966589
求助须知:如何正确求助?哪些是违规求助? 3512031
关于积分的说明 11161353
捐赠科研通 3246821
什么是DOI,文献DOI怎么找? 1793510
邀请新用户注册赠送积分活动 874482
科研通“疑难数据库(出版商)”最低求助积分说明 804420