Winter wheat yield prediction using convolutional neural networks and UAV-based multispectral imagery

多光谱图像 卷积神经网络 人工智能 计算机科学 均方误差 线性回归 预测建模 精准农业 回归 阶段(地层学) 回归分析 深度学习 人工神经网络 模式识别(心理学) 机器学习 数学 统计 农业 地理 古生物学 考古 生物
作者
Ryoya Tanabe,Tsutomu Matsui,Takashi Tanaka
出处
期刊:Field Crops Research [Elsevier]
卷期号:291: 108786-108786 被引量:75
标识
DOI:10.1016/j.fcr.2022.108786
摘要

An inexpensive and precise crop yield prediction technology is required for facilitating precision agriculture for Asian countries in which small-scale fields are primarily managed. One of the most popular deep learning methods, convolutional neural networks (CNNs), yield better performances for classification problems than other general machine learning techniques. It is necessarily to verify the effectiveness of CNN for crop yield prediction. To do this, UAV-based multispectral imagery was acquired in four growth stages, including the heading, milk, dough, and ripening stages of winter wheat. The effects of growth stage on yield prediction accuracy were assessed. Furthermore, the effects of the combination of different growth stages on accuracy were assessed using multi-temporal CNN model. The prediction accuracies of CNN models were compared with linear regression models based on a typical vegetation index, enhanced vegetation index 2 (EVI2), as a conventional regression algorithm. The CNN model of the heading stage showed the lowest RMSE (0.94 t ha−1) among the four growth stages and outperformed the best linear regression model (RMSE of 1.00 t ha−1). The prediction accuracies of the multi-temporal CNN, and multiple linear regression models based on EVI2 were less than that of the CNN model of the heading stage. These results suggested that the CNN had the potential to improve the accuracy of yield prediction, and the heading stage was suitable data acquisition time for winter wheat in this study. In addition, the combination of growth stage may not improve the accuracy. Further studies with higher resolution multispectral images and integration of weather data are needed to improve the accuracy and robustness of the model and adaptability for different cultivars.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
神勇的青亦完成签到,获得积分10
刚刚
ding应助科研一路绿灯采纳,获得10
刚刚
zcy完成签到,获得积分10
刚刚
大模型应助整齐听枫采纳,获得10
2秒前
李盛男完成签到,获得积分10
3秒前
小巧大山完成签到,获得积分10
4秒前
wangli发布了新的文献求助10
5秒前
5秒前
小马甲应助lkj采纳,获得10
6秒前
彭于晏应助gui采纳,获得10
8秒前
饱满从蕾完成签到,获得积分10
8秒前
爱笑萝莉发布了新的文献求助10
9秒前
9秒前
LLLLLLLL完成签到 ,获得积分10
9秒前
南佳完成签到,获得积分10
9秒前
真实的火车完成签到,获得积分10
9秒前
10秒前
11秒前
嘉子完成签到,获得积分10
12秒前
12秒前
饱满从蕾发布了新的文献求助10
12秒前
古月完成签到 ,获得积分10
13秒前
kpzwov完成签到,获得积分10
13秒前
13秒前
整齐听枫发布了新的文献求助10
15秒前
17秒前
香蕉觅云应助臭臭采纳,获得10
17秒前
yz发布了新的文献求助10
18秒前
七月完成签到,获得积分10
20秒前
乐观香寒完成签到,获得积分10
20秒前
likun_42完成签到,获得积分10
21秒前
刘陌陌完成签到,获得积分10
21秒前
赵乂发布了新的文献求助10
21秒前
123完成签到,获得积分10
21秒前
23秒前
24秒前
24秒前
大辣娇发布了新的文献求助10
25秒前
26秒前
wanci应助神勇的青亦采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565910
求助须知:如何正确求助?哪些是违规求助? 4650917
关于积分的说明 14693820
捐赠科研通 4592971
什么是DOI,文献DOI怎么找? 2519822
邀请新用户注册赠送积分活动 1492187
关于科研通互助平台的介绍 1463382