亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Winter wheat yield prediction using convolutional neural networks and UAV-based multispectral imagery

多光谱图像 卷积神经网络 人工智能 计算机科学 均方误差 线性回归 预测建模 精准农业 回归 阶段(地层学) 回归分析 深度学习 人工神经网络 模式识别(心理学) 机器学习 数学 统计 农业 地理 古生物学 考古 生物
作者
Ryoya Tanabe,Tsutomu Matsui,Takashi Tanaka
出处
期刊:Field Crops Research [Elsevier]
卷期号:291: 108786-108786 被引量:75
标识
DOI:10.1016/j.fcr.2022.108786
摘要

An inexpensive and precise crop yield prediction technology is required for facilitating precision agriculture for Asian countries in which small-scale fields are primarily managed. One of the most popular deep learning methods, convolutional neural networks (CNNs), yield better performances for classification problems than other general machine learning techniques. It is necessarily to verify the effectiveness of CNN for crop yield prediction. To do this, UAV-based multispectral imagery was acquired in four growth stages, including the heading, milk, dough, and ripening stages of winter wheat. The effects of growth stage on yield prediction accuracy were assessed. Furthermore, the effects of the combination of different growth stages on accuracy were assessed using multi-temporal CNN model. The prediction accuracies of CNN models were compared with linear regression models based on a typical vegetation index, enhanced vegetation index 2 (EVI2), as a conventional regression algorithm. The CNN model of the heading stage showed the lowest RMSE (0.94 t ha−1) among the four growth stages and outperformed the best linear regression model (RMSE of 1.00 t ha−1). The prediction accuracies of the multi-temporal CNN, and multiple linear regression models based on EVI2 were less than that of the CNN model of the heading stage. These results suggested that the CNN had the potential to improve the accuracy of yield prediction, and the heading stage was suitable data acquisition time for winter wheat in this study. In addition, the combination of growth stage may not improve the accuracy. Further studies with higher resolution multispectral images and integration of weather data are needed to improve the accuracy and robustness of the model and adaptability for different cultivars.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
5秒前
学生信的大叔完成签到,获得积分10
5秒前
云轰2857发布了新的文献求助10
9秒前
进步面包笑哈哈应助huayu采纳,获得30
10秒前
12秒前
量子星尘发布了新的文献求助10
17秒前
哭泣朝雪发布了新的文献求助10
21秒前
21秒前
上官若男应助云轰2857采纳,获得10
24秒前
吴子鹏发布了新的文献求助10
26秒前
yeeming应助Chocolat_Chaud采纳,获得10
35秒前
云轰2857完成签到,获得积分10
36秒前
G13完成签到,获得积分20
37秒前
田様应助吴子鹏采纳,获得10
43秒前
44秒前
易水完成签到 ,获得积分10
46秒前
FSDF完成签到,获得积分20
49秒前
科研通AI6应助FSDF采纳,获得10
52秒前
1分钟前
赵456完成签到 ,获得积分10
1分钟前
所所应助科研通管家采纳,获得10
1分钟前
Hello应助小趴菜采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
小趴菜发布了新的文献求助10
1分钟前
海洋发布了新的文献求助10
1分钟前
小二郎应助海洋采纳,获得10
1分钟前
1分钟前
1分钟前
liu完成签到 ,获得积分10
1分钟前
drjyang完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
Vintoe完成签到 ,获得积分10
2分钟前
5050完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509482
求助须知:如何正确求助?哪些是违规求助? 4604372
关于积分的说明 14489686
捐赠科研通 4539145
什么是DOI,文献DOI怎么找? 2487317
邀请新用户注册赠送积分活动 1469770
关于科研通互助平台的介绍 1442014