Winter wheat yield prediction using convolutional neural networks and UAV-based multispectral imagery

多光谱图像 卷积神经网络 人工智能 计算机科学 均方误差 线性回归 预测建模 精准农业 回归 阶段(地层学) 回归分析 深度学习 人工神经网络 模式识别(心理学) 机器学习 数学 统计 农业 地理 古生物学 考古 生物
作者
Ryoya Tanabe,Tsutomu Matsui,Takashi Tanaka
出处
期刊:Field Crops Research [Elsevier BV]
卷期号:291: 108786-108786 被引量:54
标识
DOI:10.1016/j.fcr.2022.108786
摘要

An inexpensive and precise crop yield prediction technology is required for facilitating precision agriculture for Asian countries in which small-scale fields are primarily managed. One of the most popular deep learning methods, convolutional neural networks (CNNs), yield better performances for classification problems than other general machine learning techniques. It is necessarily to verify the effectiveness of CNN for crop yield prediction. To do this, UAV-based multispectral imagery was acquired in four growth stages, including the heading, milk, dough, and ripening stages of winter wheat. The effects of growth stage on yield prediction accuracy were assessed. Furthermore, the effects of the combination of different growth stages on accuracy were assessed using multi-temporal CNN model. The prediction accuracies of CNN models were compared with linear regression models based on a typical vegetation index, enhanced vegetation index 2 (EVI2), as a conventional regression algorithm. The CNN model of the heading stage showed the lowest RMSE (0.94 t ha−1) among the four growth stages and outperformed the best linear regression model (RMSE of 1.00 t ha−1). The prediction accuracies of the multi-temporal CNN, and multiple linear regression models based on EVI2 were less than that of the CNN model of the heading stage. These results suggested that the CNN had the potential to improve the accuracy of yield prediction, and the heading stage was suitable data acquisition time for winter wheat in this study. In addition, the combination of growth stage may not improve the accuracy. Further studies with higher resolution multispectral images and integration of weather data are needed to improve the accuracy and robustness of the model and adaptability for different cultivars.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
某慧发布了新的文献求助20
3秒前
糖糖完成签到,获得积分10
4秒前
maoy发布了新的文献求助10
4秒前
4秒前
湘湘完成签到,获得积分10
5秒前
赘婿应助徐雪雯采纳,获得10
7秒前
fdscat发布了新的文献求助10
8秒前
8秒前
科研通AI2S应助活力山蝶采纳,获得10
10秒前
jing发布了新的文献求助20
11秒前
zd发布了新的文献求助10
12秒前
湘湘发布了新的文献求助10
12秒前
awrawsaf发布了新的文献求助10
12秒前
123333发布了新的文献求助10
14秒前
14秒前
zzt完成签到,获得积分10
15秒前
16秒前
17秒前
18秒前
FashionBoy应助科研通管家采纳,获得10
18秒前
NexusExplorer应助科研通管家采纳,获得10
18秒前
传奇3应助科研通管家采纳,获得10
18秒前
18秒前
MingDong发布了新的文献求助10
19秒前
天天快乐应助123333采纳,获得10
19秒前
研友_r8YgPn发布了新的文献求助10
20秒前
23秒前
23秒前
24秒前
量子星尘发布了新的文献求助10
25秒前
江蹇发布了新的文献求助10
26秒前
wade2016发布了新的文献求助10
27秒前
27秒前
酷酷的冰真应助fdscat采纳,获得10
28秒前
新火发布了新的文献求助10
28秒前
ZZZJW完成签到,获得积分10
30秒前
30秒前
希望天下0贩的0应助妖哥采纳,获得10
30秒前
传奇3应助zd采纳,获得10
32秒前
季不住完成签到,获得积分10
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959821
求助须知:如何正确求助?哪些是违规求助? 3506056
关于积分的说明 11127696
捐赠科研通 3237994
什么是DOI,文献DOI怎么找? 1789429
邀请新用户注册赠送积分活动 871773
科研通“疑难数据库(出版商)”最低求助积分说明 803021