Discovering and forecasting extreme events via active learning in neural operators

计算机科学 人工智能 人工神经网络 可扩展性 贝叶斯概率 深层神经网络 非线性系统 机器学习 深度学习 量子力学 数据库 物理
作者
Ethan Pickering,Stephen Guth,George Em Karniadakis,Themistoklis P. Sapsis
出处
期刊:Nature Computational Science [Springer Nature]
卷期号:2 (12): 823-833 被引量:20
标识
DOI:10.1038/s43588-022-00376-0
摘要

Extreme events in society and nature, such as pandemic spikes, rogue waves or structural failures, can have catastrophic consequences. Characterizing extremes is difficult, as they occur rarely, arise from seemingly benign conditions, and belong to complex and often unknown infinite-dimensional systems. Such challenges render attempts at characterizing them moot. We address each of these difficulties by combining output-weighted training schemes in Bayesian experimental design (BED) with an ensemble of deep neural operators. This model-agnostic framework pairs a BED scheme that actively selects data for quantifying extreme events with an ensemble of deep neural operators that approximate infinite-dimensional nonlinear operators. We show that not only does this framework outperform Gaussian processes, but that (1) shallow ensembles of just two members perform best; (2) extremes are uncovered regardless of the state of the initial data (that is, with or without extremes); (3) our method eliminates ‘double-descent’ phenomena; (4) the use of batches of suboptimal acquisition samples compared to step-by-step global optima does not hinder BED performance; and (5) Monte Carlo acquisition outperforms standard optimizers in high dimensions. Together, these conclusions form a scalable artificial intelligence (AI)-assisted experimental infrastructure that can efficiently infer and pinpoint critical situations across many domains, from physical to societal systems. This study presents a model-agnostic framework that pairs deep neural operators and Bayesian experimental design for the accurate prediction of extreme events, such as rogue waves, pandemic spikes and structural ship failures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孝艺完成签到 ,获得积分10
刚刚
皮皮虾发布了新的文献求助20
刚刚
123qwe完成签到,获得积分10
刚刚
张培培发布了新的文献求助10
1秒前
悟生菌完成签到,获得积分10
2秒前
2秒前
shaohua2011完成签到,获得积分10
3秒前
香蕉真完成签到,获得积分10
4秒前
frenchfriespie完成签到,获得积分10
4秒前
hmf1995发布了新的文献求助10
4秒前
5秒前
5秒前
wanci应助xpd采纳,获得20
6秒前
6秒前
7秒前
Kashing完成签到,获得积分10
7秒前
打打应助MS采纳,获得10
7秒前
7秒前
雪白的雪完成签到,获得积分10
8秒前
科研不是科幻完成签到,获得积分20
9秒前
李健应助甲基绿采纳,获得10
9秒前
10秒前
10秒前
欧阳璐完成签到,获得积分10
10秒前
懵懂的梦秋应助罗元正采纳,获得10
11秒前
pikaka完成签到,获得积分10
11秒前
11秒前
义气的音响完成签到 ,获得积分10
11秒前
小蜜蜂发布了新的文献求助10
11秒前
april完成签到,获得积分10
12秒前
大王完成签到,获得积分20
12秒前
13秒前
袖贤完成签到,获得积分10
13秒前
华仔应助文献哈巴狗采纳,获得10
13秒前
13秒前
哦莫发布了新的文献求助20
14秒前
14秒前
15秒前
15秒前
FashionBoy应助666星爷采纳,获得10
15秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168110
求助须知:如何正确求助?哪些是违规求助? 2819468
关于积分的说明 7926640
捐赠科研通 2479343
什么是DOI,文献DOI怎么找? 1320739
科研通“疑难数据库(出版商)”最低求助积分说明 632898
版权声明 602458