Discovering and forecasting extreme events via active learning in neural operators

计算机科学 人工智能 人工神经网络 机器学习
作者
Ethan Pickering,Stephen Guth,George Em Karniadakis,Themistoklis P. Sapsis
出处
期刊:Nature Computational Science [Springer Nature]
卷期号:2 (12): 823-833 被引量:48
标识
DOI:10.1038/s43588-022-00376-0
摘要

Extreme events in society and nature, such as pandemic spikes, rogue waves or structural failures, can have catastrophic consequences. Characterizing extremes is difficult, as they occur rarely, arise from seemingly benign conditions, and belong to complex and often unknown infinite-dimensional systems. Such challenges render attempts at characterizing them moot. We address each of these difficulties by combining output-weighted training schemes in Bayesian experimental design (BED) with an ensemble of deep neural operators. This model-agnostic framework pairs a BED scheme that actively selects data for quantifying extreme events with an ensemble of deep neural operators that approximate infinite-dimensional nonlinear operators. We show that not only does this framework outperform Gaussian processes, but that (1) shallow ensembles of just two members perform best; (2) extremes are uncovered regardless of the state of the initial data (that is, with or without extremes); (3) our method eliminates ‘double-descent’ phenomena; (4) the use of batches of suboptimal acquisition samples compared to step-by-step global optima does not hinder BED performance; and (5) Monte Carlo acquisition outperforms standard optimizers in high dimensions. Together, these conclusions form a scalable artificial intelligence (AI)-assisted experimental infrastructure that can efficiently infer and pinpoint critical situations across many domains, from physical to societal systems. This study presents a model-agnostic framework that pairs deep neural operators and Bayesian experimental design for the accurate prediction of extreme events, such as rogue waves, pandemic spikes and structural ship failures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fxx发布了新的文献求助10
刚刚
1秒前
ning发布了新的文献求助10
1秒前
1秒前
11应助BareBear采纳,获得10
2秒前
VDC发布了新的文献求助10
2秒前
呵呵哒完成签到,获得积分10
2秒前
xxt发布了新的文献求助10
2秒前
yhzhang发布了新的文献求助10
2秒前
2秒前
viola发布了新的文献求助10
2秒前
瘦瘦小土豆完成签到,获得积分10
3秒前
LXY完成签到,获得积分10
3秒前
Aking发布了新的文献求助10
3秒前
yujianjin完成签到,获得积分10
3秒前
科研菜鸟完成签到,获得积分10
3秒前
cjhAshley发布了新的文献求助10
4秒前
达达不爱学术完成签到,获得积分10
4秒前
吞吞发布了新的文献求助30
4秒前
Shaka发布了新的文献求助10
5秒前
5秒前
77发布了新的文献求助10
5秒前
5秒前
ding完成签到,获得积分10
6秒前
sic完成签到,获得积分10
6秒前
7秒前
7秒前
饱满凌波发布了新的文献求助50
8秒前
1111完成签到,获得积分10
8秒前
小二郎应助姜落采纳,获得10
8秒前
OrtonF7发布了新的文献求助10
8秒前
8秒前
畅快的草莓完成签到,获得积分10
9秒前
年轻的紫菜完成签到,获得积分10
9秒前
自行车v完成签到,获得积分10
9秒前
什么时候毕业完成签到,获得积分10
9秒前
书翊发布了新的文献求助10
9秒前
9秒前
xixi发布了新的文献求助20
10秒前
柒辞完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5710497
求助须知:如何正确求助?哪些是违规求助? 5199402
关于积分的说明 15260984
捐赠科研通 4863101
什么是DOI,文献DOI怎么找? 2610419
邀请新用户注册赠送积分活动 1560773
关于科研通互助平台的介绍 1518409