Discovering and forecasting extreme events via active learning in neural operators

计算机科学 人工智能 人工神经网络 机器学习
作者
Ethan Pickering,Stephen Guth,George Em Karniadakis,Themistoklis P. Sapsis
出处
期刊:Nature Computational Science [Nature Portfolio]
卷期号:2 (12): 823-833 被引量:48
标识
DOI:10.1038/s43588-022-00376-0
摘要

Extreme events in society and nature, such as pandemic spikes, rogue waves or structural failures, can have catastrophic consequences. Characterizing extremes is difficult, as they occur rarely, arise from seemingly benign conditions, and belong to complex and often unknown infinite-dimensional systems. Such challenges render attempts at characterizing them moot. We address each of these difficulties by combining output-weighted training schemes in Bayesian experimental design (BED) with an ensemble of deep neural operators. This model-agnostic framework pairs a BED scheme that actively selects data for quantifying extreme events with an ensemble of deep neural operators that approximate infinite-dimensional nonlinear operators. We show that not only does this framework outperform Gaussian processes, but that (1) shallow ensembles of just two members perform best; (2) extremes are uncovered regardless of the state of the initial data (that is, with or without extremes); (3) our method eliminates ‘double-descent’ phenomena; (4) the use of batches of suboptimal acquisition samples compared to step-by-step global optima does not hinder BED performance; and (5) Monte Carlo acquisition outperforms standard optimizers in high dimensions. Together, these conclusions form a scalable artificial intelligence (AI)-assisted experimental infrastructure that can efficiently infer and pinpoint critical situations across many domains, from physical to societal systems. This study presents a model-agnostic framework that pairs deep neural operators and Bayesian experimental design for the accurate prediction of extreme events, such as rogue waves, pandemic spikes and structural ship failures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坦率的文龙完成签到,获得积分10
1秒前
2秒前
大蒜味酸奶钊完成签到 ,获得积分10
2秒前
2秒前
安详可燕完成签到,获得积分20
2秒前
James完成签到,获得积分10
3秒前
星空点点完成签到 ,获得积分10
3秒前
顾矜应助Blues汪采纳,获得10
3秒前
崔win发布了新的文献求助10
3秒前
路漫漫123完成签到,获得积分10
4秒前
啾咪发布了新的文献求助10
4秒前
5秒前
GingerF应助超级的晓啸采纳,获得60
6秒前
林炎完成签到,获得积分10
6秒前
安详可燕发布了新的文献求助10
6秒前
zzt关闭了zzt文献求助
6秒前
十亿少女的梦完成签到,获得积分10
6秒前
cyz完成签到,获得积分10
7秒前
7秒前
qiyixuan发布了新的文献求助10
8秒前
小宝完成签到,获得积分10
8秒前
9秒前
小蘑菇应助chen采纳,获得10
9秒前
Adler发布了新的文献求助10
9秒前
seata发布了新的文献求助10
9秒前
ZhiyunXu2012完成签到 ,获得积分10
10秒前
Zyer完成签到,获得积分10
10秒前
11秒前
12秒前
shisui发布了新的文献求助20
13秒前
忧虑的电话完成签到,获得积分10
13秒前
月亮完成签到,获得积分20
14秒前
张今天也要做科研呀完成签到,获得积分10
15秒前
GH完成签到,获得积分10
15秒前
15秒前
崔win完成签到,获得积分10
16秒前
lin发布了新的文献求助10
16秒前
艾迪富富完成签到,获得积分10
16秒前
羔羊发布了新的文献求助10
17秒前
科研顺利完成签到,获得积分10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951532
求助须知:如何正确求助?哪些是违规求助? 3496928
关于积分的说明 11085323
捐赠科研通 3227364
什么是DOI,文献DOI怎么找? 1784413
邀请新用户注册赠送积分活动 868444
科研通“疑难数据库(出版商)”最低求助积分说明 801139