材料科学
钙钛矿(结构)
佩多:嘘
光电流
光电探测器
光电子学
响应度
聚苯乙烯磺酸盐
氧化铟锡
薄膜
结晶度
相(物质)
光伏
纳米技术
图层(电子)
化学工程
光伏系统
复合材料
有机化学
化学
工程类
生物
生态学
作者
Xinyu Zhang,Ziqing Li,Tingting Yan,Li Su,Xiaosheng Fang
出处
期刊:Small
[Wiley]
日期:2023-01-01
卷期号:19 (9)
被引量:44
标识
DOI:10.1002/smll.202206310
摘要
2D Ruddlesden-Popper perovskites (PVKs) have recently shown overwhelming potential in various optoelectronic devices on account of enhanced stability to their 3D counterparts. So far, regulating the phase distribution and orientation of 2D perovskite thin films remains challenging to achieve efficient charge transport. This work elucidates the balance struck between sufficient gradient sedimentation of perovskite colloids and less formation of small-n phases, which results in the layered alignment of phase compositions and thus in enhanced photoresponse. The solvent engineering strategy, together with the introduction of poly(3,4-ethylene-dioxythiophene):polystyrene sulfonate (PEDOT:PSS) and PC71 BM layer jointly contribute to outstanding self-powered performance of indium tin oxide/PEDOT:PSS/PVK/PC71 BM/Ag device, with a photocurrent of 18.4 µA and an on/off ratio up to 2800. The as-fabricated photodetector exhibits high sensitivity characteristics with the peak responsivity of 0.22 A W-1 and the detectivity up to 1.3 × 1012 Jones detected at UV-A region, outperforming most reported perovskite-based UV photodetectors and maintaining high stability over a wide spectrum ranging from UV to visible region. This discovery supplies deep insights into the control of ordered phases and crystallinity in quasi-2D perovskite films for high-performance optoelectronic devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI