纤细眼虫
酶动力学
昆布
生物化学
酵母
酶
水解
葡聚糖
化学
葡聚糖酶
生物
活动站点
叶绿体
基因
作者
Rodrigo D. Calloni,Robertino J. Muchut,Sergio A. Garay,Diego G. Arias,Alberto A. Iglesias,Sandra Guerrero
出处
期刊:Biochimie
[Elsevier]
日期:2023-05-01
卷期号:208: 117-128
标识
DOI:10.1016/j.biochi.2022.12.016
摘要
Endo-β-1,3-glucanases from several organisms have attracted much attention in recent years because of their capability for in vitro degrading β-1,3-glucan as a critical step for both biofuels production and short-chain oligosaccharides synthesis. In this study, we biochemically characterized a putative endo-β-1,3-glucanase (EgrGH64) belonging to the family GH64 from the single-cell protist Euglena gracilis. The gene coding for the enzyme was heterologously expressed in a prokaryotic expression system supplemented with 3% (v/v) ethanol to optimize the recombinant protein right folding. Thus, the produced enzyme was highly purified by immobilized-metal affinity and gel filtration chromatography. The enzymatic study demonstrated that EgrGH64 could hydrolyze laminarin (KM 23.5 mg ml−1,kcat 1.20 s−1) and also, but with less enzymatic efficiency, paramylon (KM 20.2 mg ml−1,kcat 0.23 ml mg−1 s−1). The major product of the hydrolysis of both substrates was laminaripentaose. The enzyme could also use ramified β-glucan from the baker's yeast cell wall as a substrate (KM 2.10 mg ml−1, kcat 0.88 ml mg−1 s−1). This latter result, combined with interfacial kinetic analysis evidenced a protein's greater efficiency for the yeast polysaccharide, and a higher number of hydrolysis sites in the β-1,3/β-1,6-glucan. Concurrently, the enzyme efficiently inhibited the fungal growth when used at 1.0 mg/mL (15.4 μM). This study contributes to assigning a correct function and determining the enzymatic specificity of EgrGH64, which emerges as a relevant biotechnological tool for processing β-glucans.
科研通智能强力驱动
Strongly Powered by AbleSci AI