Semantic and Structural View Fusion Modeling for Social Recommendation

计算机科学 情报检索 自然语言处理 人工智能 数据科学
作者
Kun Yuan,Guannan Liu,Junjie Wu,Hui Xiong
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:35 (11): 11872-11884 被引量:5
标识
DOI:10.1109/tkde.2022.3230972
摘要

Existing studies have shown that user-item interaction data and social relation data can be jointly used for enhancing the performance of social recommendation. However, limited research has a focus on investigating how to deeply exploit different views of social interaction structures and rating behavior differences for further improving social recommendation. To this end, in this paper, we propose to integrate information from both semantic and structural views for social recommendation. Specifically, we first design a collective intelligence-based strategy to reveal high-quality implicit relations for both users and items. Then, by reformulating all available nodes and relations as a heterogeneous graph, we define multiple semantic metapaths to capture diverse preferences for comprehensive user and item representations. While various metapaths enlarge the representation capacity of users and items, they also introduce noise and irrelevant information. We recall that, for the user-item interaction graph, different structure sizes (e.g., local and global structures) provide diverse and complementary information for recommendation. Motivated by this, we propose a semantic and structural view fusion framework for social recommendation (S4Rec), which consists of a deep graph model and a wide attentive SVD (Singular Value Decomposition) model for rating prediction by taking the local and global structure as input and aggregating messages along the predefined metapaths. Finally, the two predicted results are adaptively fused to achieve the final both accurate and stable prediction. In addition, we treat the user's rating behavior difference as the relative position difference problem in the embedding space, and model it with TransH to improve the generalization ability of the main rating model. Extensive experiments on three open datasets demonstrate the superiority of our framework compared with state-of-the-art methods. Particularly, our model outperforms other baselines under different sparsity conditions, further validating the effectiveness on cold-start users. We release the source code at https://github.com/lcwy220/Social-Recommendation .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Elaine完成签到,获得积分10
刚刚
h41692011完成签到 ,获得积分10
刚刚
斯文败类应助圆圆采纳,获得30
1秒前
李健的小迷弟应助7777777采纳,获得10
1秒前
涛浪驳回了田様应助
1秒前
1秒前
1秒前
2秒前
2秒前
个木发布了新的文献求助10
2秒前
上官若男应助SY采纳,获得10
3秒前
不易BY完成签到,获得积分10
3秒前
ee关闭了ee文献求助
3秒前
Ysh完成签到,获得积分20
3秒前
拼搏念蕾完成签到 ,获得积分10
3秒前
一页完成签到,获得积分10
4秒前
眯眯眼的衬衫应助JiaqiLiu采纳,获得10
4秒前
科研通AI2S应助VDC采纳,获得10
4秒前
wwt发布了新的文献求助10
4秒前
务实大船完成签到,获得积分10
5秒前
蜗牛撵大象完成签到,获得积分10
5秒前
6秒前
sun发布了新的文献求助10
6秒前
6秒前
二二二发布了新的文献求助10
7秒前
开心的傲安完成签到,获得积分20
7秒前
麻麻完成签到,获得积分20
7秒前
DDTT完成签到,获得积分10
8秒前
霸气的念云完成签到,获得积分10
8秒前
Orange应助欢呼小蚂蚁采纳,获得10
8秒前
8秒前
SQ完成签到,获得积分10
9秒前
9秒前
飞跃海龙完成签到 ,获得积分10
9秒前
ufuon发布了新的文献求助10
10秒前
momo完成签到,获得积分10
11秒前
赘婿应助二二二采纳,获得10
11秒前
JamesPei应助HongJiang采纳,获得10
11秒前
clarkq完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678