Semantic and Structural View Fusion Modeling for Social Recommendation

计算机科学 情报检索 自然语言处理 人工智能 数据科学
作者
Kun Yuan,Guannan Liu,Junjie Wu,Hui Xiong
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:35 (11): 11872-11884 被引量:5
标识
DOI:10.1109/tkde.2022.3230972
摘要

Existing studies have shown that user-item interaction data and social relation data can be jointly used for enhancing the performance of social recommendation. However, limited research has a focus on investigating how to deeply exploit different views of social interaction structures and rating behavior differences for further improving social recommendation. To this end, in this paper, we propose to integrate information from both semantic and structural views for social recommendation. Specifically, we first design a collective intelligence-based strategy to reveal high-quality implicit relations for both users and items. Then, by reformulating all available nodes and relations as a heterogeneous graph, we define multiple semantic metapaths to capture diverse preferences for comprehensive user and item representations. While various metapaths enlarge the representation capacity of users and items, they also introduce noise and irrelevant information. We recall that, for the user-item interaction graph, different structure sizes (e.g., local and global structures) provide diverse and complementary information for recommendation. Motivated by this, we propose a semantic and structural view fusion framework for social recommendation (S4Rec), which consists of a deep graph model and a wide attentive SVD (Singular Value Decomposition) model for rating prediction by taking the local and global structure as input and aggregating messages along the predefined metapaths. Finally, the two predicted results are adaptively fused to achieve the final both accurate and stable prediction. In addition, we treat the user's rating behavior difference as the relative position difference problem in the embedding space, and model it with TransH to improve the generalization ability of the main rating model. Extensive experiments on three open datasets demonstrate the superiority of our framework compared with state-of-the-art methods. Particularly, our model outperforms other baselines under different sparsity conditions, further validating the effectiveness on cold-start users. We release the source code at https://github.com/lcwy220/Social-Recommendation .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Conner发布了新的文献求助10
刚刚
干冷安完成签到,获得积分10
刚刚
AppleDog发布了新的文献求助10
刚刚
刚刚
Hollow发布了新的文献求助20
1秒前
刘雪松完成签到,获得积分10
1秒前
fal发布了新的文献求助10
2秒前
2秒前
yyyyou完成签到,获得积分10
3秒前
科研通AI2S应助小刺猬采纳,获得10
3秒前
4秒前
霖槿发布了新的文献求助10
4秒前
Naveed完成签到,获得积分10
4秒前
4秒前
4秒前
王双羊发布了新的文献求助10
5秒前
Meloqi发布了新的文献求助10
6秒前
6秒前
9秒前
萌宝发布了新的文献求助10
9秒前
10秒前
11秒前
11秒前
qqq发布了新的文献求助10
11秒前
宁大大发布了新的文献求助10
12秒前
xxiix发布了新的文献求助50
12秒前
无心的尔阳完成签到 ,获得积分10
13秒前
可爱的豁应助萌宝采纳,获得10
14秒前
15秒前
柠檬小lin发布了新的文献求助10
15秒前
hhhhKwok发布了新的文献求助10
15秒前
清风徐来关注了科研通微信公众号
17秒前
辣子鸡完成签到,获得积分20
17秒前
18秒前
18秒前
21秒前
自己发布了新的文献求助10
21秒前
22秒前
陈睿毅发布了新的文献求助10
23秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
The Paleoanthropology of Eastern Asia 500
Evolution 3rd edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3174316
求助须知:如何正确求助?哪些是违规求助? 2825549
关于积分的说明 7953081
捐赠科研通 2486512
什么是DOI,文献DOI怎么找? 1325288
科研通“疑难数据库(出版商)”最低求助积分说明 634409
版权声明 602734