亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Semantic and Structural View Fusion Modeling for Social Recommendation

计算机科学 情报检索 自然语言处理 人工智能 数据科学
作者
Kun Yuan,Guannan Liu,Junjie Wu,Hui Xiong
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:35 (11): 11872-11884 被引量:8
标识
DOI:10.1109/tkde.2022.3230972
摘要

Existing studies have shown that user-item interaction data and social relation data can be jointly used for enhancing the performance of social recommendation. However, limited research has a focus on investigating how to deeply exploit different views of social interaction structures and rating behavior differences for further improving social recommendation. To this end, in this paper, we propose to integrate information from both semantic and structural views for social recommendation. Specifically, we first design a collective intelligence-based strategy to reveal high-quality implicit relations for both users and items. Then, by reformulating all available nodes and relations as a heterogeneous graph, we define multiple semantic metapaths to capture diverse preferences for comprehensive user and item representations. While various metapaths enlarge the representation capacity of users and items, they also introduce noise and irrelevant information. We recall that, for the user-item interaction graph, different structure sizes (e.g., local and global structures) provide diverse and complementary information for recommendation. Motivated by this, we propose a semantic and structural view fusion framework for social recommendation (S4Rec), which consists of a deep graph model and a wide attentive SVD (Singular Value Decomposition) model for rating prediction by taking the local and global structure as input and aggregating messages along the predefined metapaths. Finally, the two predicted results are adaptively fused to achieve the final both accurate and stable prediction. In addition, we treat the user's rating behavior difference as the relative position difference problem in the embedding space, and model it with TransH to improve the generalization ability of the main rating model. Extensive experiments on three open datasets demonstrate the superiority of our framework compared with state-of-the-art methods. Particularly, our model outperforms other baselines under different sparsity conditions, further validating the effectiveness on cold-start users. We release the source code at https://github.com/lcwy220/Social-Recommendation .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
39秒前
41秒前
草莓味哒Pooh完成签到,获得积分10
45秒前
符聪发布了新的文献求助10
46秒前
53秒前
可爱的函函应助符聪采纳,获得10
56秒前
Jasper应助Palpitate采纳,获得10
1分钟前
1分钟前
1分钟前
赘婿应助科研通管家采纳,获得30
2分钟前
YifanWang应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
wzq发布了新的文献求助50
2分钟前
2分钟前
wzq完成签到,获得积分10
2分钟前
GLv完成签到,获得积分20
2分钟前
不攻自破发布了新的文献求助10
2分钟前
3分钟前
Palpitate发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
Shoujiang完成签到 ,获得积分10
3分钟前
Akim应助Achange采纳,获得10
3分钟前
3分钟前
领导范儿应助不攻自破采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
YifanWang应助科研通管家采纳,获得10
4分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
4分钟前
不攻自破发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
bluebell发布了新的文献求助10
4分钟前
4分钟前
胡萝卜完成签到,获得积分10
5分钟前
Achange发布了新的文献求助10
5分钟前
小飞鸡发布了新的文献求助10
5分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965706
求助须知:如何正确求助?哪些是违规求助? 3510935
关于积分的说明 11155653
捐赠科研通 3245378
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804214