Semantic and Structural View Fusion Modeling for Social Recommendation

计算机科学 情报检索 自然语言处理 人工智能 数据科学
作者
Kun Yuan,Guannan Liu,Junjie Wu,Hui Xiong
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:35 (11): 11872-11884 被引量:10
标识
DOI:10.1109/tkde.2022.3230972
摘要

Existing studies have shown that user-item interaction data and social relation data can be jointly used for enhancing the performance of social recommendation. However, limited research has a focus on investigating how to deeply exploit different views of social interaction structures and rating behavior differences for further improving social recommendation. To this end, in this paper, we propose to integrate information from both semantic and structural views for social recommendation. Specifically, we first design a collective intelligence-based strategy to reveal high-quality implicit relations for both users and items. Then, by reformulating all available nodes and relations as a heterogeneous graph, we define multiple semantic metapaths to capture diverse preferences for comprehensive user and item representations. While various metapaths enlarge the representation capacity of users and items, they also introduce noise and irrelevant information. We recall that, for the user-item interaction graph, different structure sizes (e.g., local and global structures) provide diverse and complementary information for recommendation. Motivated by this, we propose a semantic and structural view fusion framework for social recommendation (S4Rec), which consists of a deep graph model and a wide attentive SVD (Singular Value Decomposition) model for rating prediction by taking the local and global structure as input and aggregating messages along the predefined metapaths. Finally, the two predicted results are adaptively fused to achieve the final both accurate and stable prediction. In addition, we treat the user's rating behavior difference as the relative position difference problem in the embedding space, and model it with TransH to improve the generalization ability of the main rating model. Extensive experiments on three open datasets demonstrate the superiority of our framework compared with state-of-the-art methods. Particularly, our model outperforms other baselines under different sparsity conditions, further validating the effectiveness on cold-start users. We release the source code at https://github.com/lcwy220/Social-Recommendation .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
changping应助多情立辉采纳,获得10
刚刚
务实妖妖完成签到,获得积分10
1秒前
xiiin发布了新的文献求助10
2秒前
正好发布了新的文献求助10
4秒前
青春完成签到,获得积分10
5秒前
惠惠完成签到 ,获得积分10
5秒前
琪求好运发布了新的文献求助10
7秒前
热心梦山发布了新的文献求助10
8秒前
科研通AI2S应助文艺烧鹅采纳,获得10
9秒前
今后应助踏实的白羊采纳,获得100
9秒前
9秒前
小小完成签到,获得积分10
10秒前
zhouxw27完成签到,获得积分10
10秒前
醉熏的伊完成签到,获得积分10
13秒前
aaaabc完成签到 ,获得积分10
15秒前
15秒前
虚幻傲珊发布了新的文献求助10
15秒前
18秒前
changping应助畅快的觅风采纳,获得10
19秒前
19秒前
20秒前
Dr_J发布了新的文献求助10
23秒前
24秒前
赵小满发布了新的文献求助10
25秒前
25秒前
牛牛发布了新的文献求助10
26秒前
28秒前
29秒前
文艺烧鹅完成签到,获得积分20
30秒前
32秒前
chlc6973完成签到,获得积分10
32秒前
32秒前
33秒前
高高完成签到,获得积分10
33秒前
Cloud发布了新的文献求助10
34秒前
34秒前
yaooo完成签到 ,获得积分10
35秒前
何东霖发布了新的文献求助10
35秒前
药学小团子完成签到,获得积分10
36秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295803
求助须知:如何正确求助?哪些是违规求助? 4445172
关于积分的说明 13835666
捐赠科研通 4329791
什么是DOI,文献DOI怎么找? 2376755
邀请新用户注册赠送积分活动 1372067
关于科研通互助平台的介绍 1337408