Assessment of Large-Scale Indices of Surface Temperature during the Historical Period in the CMIP6 Ensemble

气候学 海面温度 环境科学 比例(比率) 概括性 地质学 地理 心理学 地图学 心理治疗师
作者
Alejandro Bodas-Salcedo,J. M. Gregory,D. M. H. Sexton,C. P. Morice
出处
期刊:Journal of Climate [American Meteorological Society]
卷期号:36 (7): 2055-2072
标识
DOI:10.1175/jcli-d-22-0398.1
摘要

Abstract We develop a statistical method to assess CMIP6 simulations of large-scale surface temperature change during the historical period (1850–2014), considering all time scales, allowing for the different unforced variability of each model and the observations, observational uncertainty, and variable ensemble size. The generality of this method, and the fact that it incorporates information about the unforced variability, makes it a useful model assessment tool. We apply this method to the historical simulations of the CMIP6 multimodel ensemble. We use three indices that measure different aspects of large-scale surface air temperature change: global mean, hemispheric gradient, and a recently developed index that captures the sea surface temperature (SST) pattern in the tropics (SST # ; see Fueglistaler and Silvers). We use the following observations: HadCRUT5 for the first two indices, and AMIPII and ERSSTv5 for SST # . In each case, we test the hypothesis that the model’s forced response is compatible with the observations, accounting for unforced variability in both models and observations as well as measurement uncertainty. This hypothesis is accepted more often (75% of the models) for the hemispheric gradient than for the global mean, for which half of the models fail the test. The tropical SST pattern is poorly simulated in all models. Given that the tropical SST pattern can strongly modulate the relationship between energy imbalance and global-mean surface temperature anomalies on annual to decadal time scales (short-term feedback parameter), we suggest this should be a focus area for future improvements due to its potential implications for the global-mean temperature evolution in decadal time scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小罗发布了新的文献求助10
1秒前
龙傲天发布了新的文献求助10
1秒前
失眠灭男发布了新的文献求助10
1秒前
罗小小发布了新的文献求助10
1秒前
21完成签到,获得积分10
2秒前
lyric完成签到,获得积分10
2秒前
2秒前
orixero应助宣依云采纳,获得10
3秒前
慕青应助钙钛矿光电突触采纳,获得10
3秒前
4秒前
云瑾应助wzjs采纳,获得10
4秒前
5秒前
大宝宝完成签到,获得积分10
6秒前
7秒前
啦啦啦发布了新的文献求助10
9秒前
田様应助cyc采纳,获得10
9秒前
啵啵完成签到 ,获得积分10
9秒前
科研通AI2S应助小米辣采纳,获得30
9秒前
爱吃麻辣烫应助1012采纳,获得10
9秒前
9秒前
10秒前
10秒前
HHYYAA发布了新的文献求助10
11秒前
今后应助想人陪的短靴采纳,获得10
11秒前
yuyu完成签到,获得积分10
12秒前
蔺丹翠发布了新的文献求助10
12秒前
海森堡完成签到,获得积分10
12秒前
13秒前
喜滋滋完成签到,获得积分10
13秒前
wzjs发布了新的文献求助10
15秒前
16秒前
在水一方应助辛木采纳,获得10
16秒前
李健的小迷弟应助HHYYAA采纳,获得10
17秒前
Kieko完成签到,获得积分10
17秒前
李萌萌发布了新的文献求助20
17秒前
艾米尼发布了新的文献求助40
18秒前
19秒前
u6e0c完成签到,获得积分10
20秒前
江峰发布了新的文献求助10
21秒前
22秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149540
求助须知:如何正确求助?哪些是违规求助? 2800615
关于积分的说明 7840805
捐赠科研通 2458144
什么是DOI,文献DOI怎么找? 1308295
科研通“疑难数据库(出版商)”最低求助积分说明 628471
版权声明 601706