亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Assessment of Large-Scale Indices of Surface Temperature during the Historical Period in the CMIP6 Ensemble

气候学 海面温度 环境科学 比例(比率) 概括性 地质学 地理 心理学 地图学 心理治疗师
作者
Alejandro Bodas-Salcedo,J. M. Gregory,D. M. H. Sexton,C. P. Morice
出处
期刊:Journal of Climate [American Meteorological Society]
卷期号:36 (7): 2055-2072
标识
DOI:10.1175/jcli-d-22-0398.1
摘要

Abstract We develop a statistical method to assess CMIP6 simulations of large-scale surface temperature change during the historical period (1850–2014), considering all time scales, allowing for the different unforced variability of each model and the observations, observational uncertainty, and variable ensemble size. The generality of this method, and the fact that it incorporates information about the unforced variability, makes it a useful model assessment tool. We apply this method to the historical simulations of the CMIP6 multimodel ensemble. We use three indices that measure different aspects of large-scale surface air temperature change: global mean, hemispheric gradient, and a recently developed index that captures the sea surface temperature (SST) pattern in the tropics (SST # ; see Fueglistaler and Silvers). We use the following observations: HadCRUT5 for the first two indices, and AMIPII and ERSSTv5 for SST # . In each case, we test the hypothesis that the model’s forced response is compatible with the observations, accounting for unforced variability in both models and observations as well as measurement uncertainty. This hypothesis is accepted more often (75% of the models) for the hemispheric gradient than for the global mean, for which half of the models fail the test. The tropical SST pattern is poorly simulated in all models. Given that the tropical SST pattern can strongly modulate the relationship between energy imbalance and global-mean surface temperature anomalies on annual to decadal time scales (short-term feedback parameter), we suggest this should be a focus area for future improvements due to its potential implications for the global-mean temperature evolution in decadal time scales.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助卷卷采纳,获得10
7秒前
天天快乐应助昊昊采纳,获得10
12秒前
谷雨秋发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
24秒前
张佳星完成签到 ,获得积分10
30秒前
32秒前
CipherSage应助llll采纳,获得10
33秒前
38秒前
滕皓轩完成签到 ,获得积分20
46秒前
大个应助阿萨卡先生采纳,获得10
47秒前
48秒前
上官若男应助xiaozhou采纳,获得10
1分钟前
1分钟前
1分钟前
wuyd90完成签到,获得积分20
1分钟前
xiaozhou发布了新的文献求助10
1分钟前
1分钟前
Shohan完成签到 ,获得积分10
1分钟前
科研通AI6应助好柿要花生采纳,获得10
1分钟前
1分钟前
沉静丹寒发布了新的文献求助10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
小蘑菇应助科研通管家采纳,获得30
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
隐形曼青应助沉静丹寒采纳,获得30
1分钟前
shaangu623完成签到,获得积分20
1分钟前
优美的小笨蛋完成签到,获得积分10
2分钟前
岁岁平安完成签到,获得积分10
2分钟前
阿萨卡先生完成签到,获得积分10
2分钟前
2分钟前
英姑应助世良采纳,获得10
2分钟前
2分钟前
2分钟前
世良发布了新的文献求助10
3分钟前
xhsz1111完成签到 ,获得积分10
3分钟前
科研通AI6应助xinyuan采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650743
求助须知:如何正确求助?哪些是违规求助? 4781633
关于积分的说明 15052578
捐赠科研通 4809571
什么是DOI,文献DOI怎么找? 2572379
邀请新用户注册赠送积分活动 1528494
关于科研通互助平台的介绍 1487373