Predicting circRNA-disease associations using similarity assessing graph convolution from multi-source information networks

计算机科学 数据挖掘 人工智能 相似性(几何) 分类器(UML) 图形 机器学习 模式识别(心理学) 理论计算机科学 图像(数学)
作者
Li Yang,Xuegang Hu,Peipei Li,Lei Wang,Zhu‐Hong You
标识
DOI:10.1109/bibm55620.2022.9995674
摘要

Circular RNA (circRNA), a novel endogenous noncoding RNA molecule with a closed-loop structure, can be used as a biomarker for many complex human diseases. Determining the relationship between circRNAs and diseases helps us to understand the diagnosis, treatment, and pathogenesis of complex diseases, which plays a critical role in clinical research. Nevertheless, the discovery of new circRNA-disease associations by wet-lab methods is not only time-consuming and costly but also randomized and blinded, which is also limited to small-scale studies. Thus, there is an urgent need to establish efficient and reliable computational methods to infer potential circRNA-disease associations on a large scale to effectively reduce costs and save time, and avoid high false-positive rates. In this paper, we propose a novel computational method for predicting circRNA-disease association based on the Similarity Assessing Graph Convolution Network (SAGCN) algorithm, which combines the multi-source similarity network constructed by circRNA and disease. Firstly, we fuse the multi-source similarity information of circRNAs and diseases and construct the multi-source similarity network respectively. Then we use the SAGCN algorithm to extract the hidden feature representations of circRNAs and diseases efficiently and objectively in the way of measuring the similarity between different nodes in the network. Finally, the obtained high-level features of circRNAs and diseases are fed to the multilayer perceptron (MLP) classifier for accurate prediction. Using the 5-fold cross-validation method, the AUC scores of the four SAGCN algorithms, on the benchmark circR2Disease dataset are 93.30%, 92.98%, 92.22% and 91.94%, respectively. Furthermore, case studies further validated that the proposed model was supported by biological experiments, and 25 of the top 30 circRNA-disease associations with the highest scores were confirmed by recent literature. Based on these reliable results, it can be anticipated that the proposed model can be used as an effective computational tool to predict circRNA-disease associations and can provide the most promising candidates for biological experiments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
郝丽娜完成签到,获得积分20
3秒前
Triangle1116发布了新的文献求助10
3秒前
3秒前
4秒前
漫若浮光完成签到,获得积分10
5秒前
1515完成签到 ,获得积分10
6秒前
8秒前
领导范儿应助从嘉采纳,获得10
8秒前
Lilith发布了新的文献求助10
9秒前
12秒前
威武荔枝发布了新的文献求助10
14秒前
狂野的明杰完成签到,获得积分10
14秒前
无花果应助Xiu采纳,获得10
16秒前
婧婧完成签到 ,获得积分10
16秒前
共享精神应助crisp采纳,获得10
17秒前
Triangle1116完成签到 ,获得积分10
18秒前
我是老大应助科研通管家采纳,获得10
18秒前
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
18秒前
传奇3应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
大模型应助科研通管家采纳,获得30
18秒前
ccm应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
19秒前
可爱的函函应助zora采纳,获得10
19秒前
19秒前
赘婿应助科研通管家采纳,获得10
19秒前
乐乐应助科研通管家采纳,获得10
19秒前
NexusExplorer应助科研通管家采纳,获得10
19秒前
YAN应助科研通管家采纳,获得10
19秒前
qingmoheng应助科研通管家采纳,获得10
19秒前
李爱国应助科研通管家采纳,获得10
19秒前
研友_VZG7GZ应助科研通管家采纳,获得10
19秒前
iNk应助科研通管家采纳,获得10
19秒前
iNk应助科研通管家采纳,获得10
19秒前
iNk应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
斯文败类应助科研通管家采纳,获得10
19秒前
fei应助科研通管家采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5499073
求助须知:如何正确求助?哪些是违规求助? 4596077
关于积分的说明 14452115
捐赠科研通 4529187
什么是DOI,文献DOI怎么找? 2481836
邀请新用户注册赠送积分活动 1465860
关于科研通互助平台的介绍 1438802