Predicting circRNA-disease associations using similarity assessing graph convolution from multi-source information networks

计算机科学 数据挖掘 人工智能 相似性(几何) 分类器(UML) 图形 机器学习 模式识别(心理学) 理论计算机科学 图像(数学)
作者
Li Yang,Xuegang Hu,Peipei Li,Lei Wang,Zhu‐Hong You
标识
DOI:10.1109/bibm55620.2022.9995674
摘要

Circular RNA (circRNA), a novel endogenous noncoding RNA molecule with a closed-loop structure, can be used as a biomarker for many complex human diseases. Determining the relationship between circRNAs and diseases helps us to understand the diagnosis, treatment, and pathogenesis of complex diseases, which plays a critical role in clinical research. Nevertheless, the discovery of new circRNA-disease associations by wet-lab methods is not only time-consuming and costly but also randomized and blinded, which is also limited to small-scale studies. Thus, there is an urgent need to establish efficient and reliable computational methods to infer potential circRNA-disease associations on a large scale to effectively reduce costs and save time, and avoid high false-positive rates. In this paper, we propose a novel computational method for predicting circRNA-disease association based on the Similarity Assessing Graph Convolution Network (SAGCN) algorithm, which combines the multi-source similarity network constructed by circRNA and disease. Firstly, we fuse the multi-source similarity information of circRNAs and diseases and construct the multi-source similarity network respectively. Then we use the SAGCN algorithm to extract the hidden feature representations of circRNAs and diseases efficiently and objectively in the way of measuring the similarity between different nodes in the network. Finally, the obtained high-level features of circRNAs and diseases are fed to the multilayer perceptron (MLP) classifier for accurate prediction. Using the 5-fold cross-validation method, the AUC scores of the four SAGCN algorithms, on the benchmark circR2Disease dataset are 93.30%, 92.98%, 92.22% and 91.94%, respectively. Furthermore, case studies further validated that the proposed model was supported by biological experiments, and 25 of the top 30 circRNA-disease associations with the highest scores were confirmed by recent literature. Based on these reliable results, it can be anticipated that the proposed model can be used as an effective computational tool to predict circRNA-disease associations and can provide the most promising candidates for biological experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助yuanjie采纳,获得10
1秒前
1秒前
刘亦菲完成签到,获得积分20
1秒前
Darren发布了新的文献求助10
1秒前
舒心无剑完成签到,获得积分10
1秒前
甜蜜笑阳完成签到,获得积分10
2秒前
2秒前
科研小白发布了新的文献求助50
3秒前
lenry完成签到,获得积分10
4秒前
临床AI发布了新的文献求助10
4秒前
iW完成签到 ,获得积分10
4秒前
大气青枫发布了新的文献求助10
4秒前
刘亦菲发布了新的文献求助10
4秒前
三班大姐完成签到,获得积分10
5秒前
5秒前
温柔妙芙发布了新的文献求助10
6秒前
深情安青应助文右三采纳,获得10
6秒前
Yziii应助莫羽倾尘采纳,获得20
7秒前
7秒前
白月光完成签到,获得积分10
7秒前
监督導部完成签到,获得积分10
7秒前
松松发布了新的文献求助30
7秒前
Jasper应助dawei采纳,获得10
8秒前
zz发布了新的文献求助10
8秒前
9秒前
悲凉的南琴完成签到,获得积分10
10秒前
10秒前
苗条店员发布了新的文献求助10
10秒前
闵玧其发布了新的文献求助10
11秒前
tian完成签到,获得积分10
11秒前
小白菜完成签到,获得积分10
11秒前
丢人之王完成签到,获得积分20
11秒前
12秒前
晴栀完成签到,获得积分20
12秒前
HDY完成签到,获得积分10
13秒前
酷炫亦竹发布了新的文献求助10
13秒前
tian发布了新的文献求助10
14秒前
崔懿龍完成签到,获得积分10
14秒前
panghu发布了新的文献求助20
15秒前
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309071
求助须知:如何正确求助?哪些是违规求助? 2942413
关于积分的说明 8508810
捐赠科研通 2617447
什么是DOI,文献DOI怎么找? 1430137
科研通“疑难数据库(出版商)”最低求助积分说明 664044
邀请新用户注册赠送积分活动 649236