亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting circRNA-disease associations using similarity assessing graph convolution from multi-source information networks

计算机科学 数据挖掘 人工智能 相似性(几何) 分类器(UML) 图形 机器学习 模式识别(心理学) 理论计算机科学 图像(数学)
作者
Li Yang,Xuegang Hu,Peipei Li,Lei Wang,Zhu‐Hong You
标识
DOI:10.1109/bibm55620.2022.9995674
摘要

Circular RNA (circRNA), a novel endogenous noncoding RNA molecule with a closed-loop structure, can be used as a biomarker for many complex human diseases. Determining the relationship between circRNAs and diseases helps us to understand the diagnosis, treatment, and pathogenesis of complex diseases, which plays a critical role in clinical research. Nevertheless, the discovery of new circRNA-disease associations by wet-lab methods is not only time-consuming and costly but also randomized and blinded, which is also limited to small-scale studies. Thus, there is an urgent need to establish efficient and reliable computational methods to infer potential circRNA-disease associations on a large scale to effectively reduce costs and save time, and avoid high false-positive rates. In this paper, we propose a novel computational method for predicting circRNA-disease association based on the Similarity Assessing Graph Convolution Network (SAGCN) algorithm, which combines the multi-source similarity network constructed by circRNA and disease. Firstly, we fuse the multi-source similarity information of circRNAs and diseases and construct the multi-source similarity network respectively. Then we use the SAGCN algorithm to extract the hidden feature representations of circRNAs and diseases efficiently and objectively in the way of measuring the similarity between different nodes in the network. Finally, the obtained high-level features of circRNAs and diseases are fed to the multilayer perceptron (MLP) classifier for accurate prediction. Using the 5-fold cross-validation method, the AUC scores of the four SAGCN algorithms, on the benchmark circR2Disease dataset are 93.30%, 92.98%, 92.22% and 91.94%, respectively. Furthermore, case studies further validated that the proposed model was supported by biological experiments, and 25 of the top 30 circRNA-disease associations with the highest scores were confirmed by recent literature. Based on these reliable results, it can be anticipated that the proposed model can be used as an effective computational tool to predict circRNA-disease associations and can provide the most promising candidates for biological experiments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
上官发布了新的文献求助10
3秒前
3秒前
4秒前
苗条一兰完成签到,获得积分10
4秒前
4秒前
上官发布了新的文献求助10
5秒前
二东完成签到,获得积分10
5秒前
上官发布了新的文献求助200
5秒前
上官发布了新的文献求助10
5秒前
6秒前
上官发布了新的文献求助10
6秒前
上官发布了新的文献求助10
6秒前
9秒前
9秒前
薛凌云发布了新的文献求助10
14秒前
苹果从菡完成签到,获得积分10
15秒前
brwen完成签到,获得积分10
16秒前
17秒前
xu完成签到,获得积分10
17秒前
23秒前
无花果完成签到 ,获得积分10
24秒前
大胆的飞扬完成签到,获得积分10
25秒前
30秒前
懒癌晚期发布了新的文献求助10
36秒前
汤圆呢醒醒完成签到,获得积分10
40秒前
ACCEPT完成签到 ,获得积分10
46秒前
薛凌云发布了新的文献求助10
50秒前
51秒前
ktw完成签到,获得积分10
54秒前
leslie发布了新的文献求助10
56秒前
Why完成签到,获得积分10
58秒前
研友_VZG7GZ应助科研通管家采纳,获得10
59秒前
英姑应助科研通管家采纳,获得10
59秒前
所所应助科研通管家采纳,获得10
59秒前
星辰大海应助科研通管家采纳,获得10
59秒前
Ava应助科研通管家采纳,获得10
59秒前
1分钟前
睡着了发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590362
求助须知:如何正确求助?哪些是违规求助? 4674705
关于积分的说明 14795095
捐赠科研通 4631363
什么是DOI,文献DOI怎么找? 2532691
邀请新用户注册赠送积分活动 1501268
关于科研通互助平台的介绍 1468617