Predicting circRNA-disease associations using similarity assessing graph convolution from multi-source information networks

计算机科学 数据挖掘 人工智能 相似性(几何) 分类器(UML) 图形 机器学习 模式识别(心理学) 理论计算机科学 图像(数学)
作者
Li Yang,Xuegang Hu,Peipei Li,Lei Wang,Zhu‐Hong You
标识
DOI:10.1109/bibm55620.2022.9995674
摘要

Circular RNA (circRNA), a novel endogenous noncoding RNA molecule with a closed-loop structure, can be used as a biomarker for many complex human diseases. Determining the relationship between circRNAs and diseases helps us to understand the diagnosis, treatment, and pathogenesis of complex diseases, which plays a critical role in clinical research. Nevertheless, the discovery of new circRNA-disease associations by wet-lab methods is not only time-consuming and costly but also randomized and blinded, which is also limited to small-scale studies. Thus, there is an urgent need to establish efficient and reliable computational methods to infer potential circRNA-disease associations on a large scale to effectively reduce costs and save time, and avoid high false-positive rates. In this paper, we propose a novel computational method for predicting circRNA-disease association based on the Similarity Assessing Graph Convolution Network (SAGCN) algorithm, which combines the multi-source similarity network constructed by circRNA and disease. Firstly, we fuse the multi-source similarity information of circRNAs and diseases and construct the multi-source similarity network respectively. Then we use the SAGCN algorithm to extract the hidden feature representations of circRNAs and diseases efficiently and objectively in the way of measuring the similarity between different nodes in the network. Finally, the obtained high-level features of circRNAs and diseases are fed to the multilayer perceptron (MLP) classifier for accurate prediction. Using the 5-fold cross-validation method, the AUC scores of the four SAGCN algorithms, on the benchmark circR2Disease dataset are 93.30%, 92.98%, 92.22% and 91.94%, respectively. Furthermore, case studies further validated that the proposed model was supported by biological experiments, and 25 of the top 30 circRNA-disease associations with the highest scores were confirmed by recent literature. Based on these reliable results, it can be anticipated that the proposed model can be used as an effective computational tool to predict circRNA-disease associations and can provide the most promising candidates for biological experiments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
橙子完成签到,获得积分10
1秒前
lili完成签到,获得积分10
2秒前
傅寒天完成签到,获得积分10
2秒前
甜甜友容完成签到,获得积分10
2秒前
博士二三事完成签到,获得积分10
2秒前
笨笨发布了新的文献求助10
2秒前
suise完成签到,获得积分10
2秒前
2秒前
123完成签到,获得积分10
2秒前
歪比巴波完成签到,获得积分10
3秒前
Bismarck完成签到,获得积分10
3秒前
小太阳完成签到,获得积分10
4秒前
加肥狗发布了新的文献求助10
4秒前
5秒前
秦磊完成签到,获得积分10
6秒前
boyue完成签到,获得积分10
6秒前
汉堡包应助gzmejiji采纳,获得10
7秒前
碧蓝的母鸡完成签到,获得积分10
8秒前
shadow完成签到,获得积分10
9秒前
小美酱发布了新的文献求助10
9秒前
li完成签到 ,获得积分10
10秒前
吕yj完成签到,获得积分10
12秒前
Dado应助A SHE采纳,获得10
13秒前
QW111完成签到,获得积分10
13秒前
维时发布了新的文献求助10
13秒前
橘里完成签到,获得积分10
13秒前
儒雅儒雅完成签到,获得积分10
13秒前
13秒前
槿裡完成签到 ,获得积分10
14秒前
王治豪完成签到,获得积分10
14秒前
Arilus完成签到 ,获得积分10
14秒前
星辰大海应助猪头小队长采纳,获得10
14秒前
15秒前
小美酱完成签到,获得积分10
16秒前
飘逸鸽子完成签到,获得积分10
16秒前
liu完成签到,获得积分10
17秒前
xue完成签到 ,获得积分10
17秒前
neuarcher完成签到,获得积分10
17秒前
猫小咪完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Theories in Second Language Acquisition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568370
求助须知:如何正确求助?哪些是违规求助? 4652947
关于积分的说明 14702495
捐赠科研通 4594744
什么是DOI,文献DOI怎么找? 2521254
邀请新用户注册赠送积分活动 1492932
关于科研通互助平台的介绍 1463734