Predicting circRNA-disease associations using similarity assessing graph convolution from multi-source information networks

计算机科学 数据挖掘 人工智能 相似性(几何) 分类器(UML) 图形 机器学习 模式识别(心理学) 理论计算机科学 图像(数学)
作者
Li Yang,Xuegang Hu,Peipei Li,Lei Wang,Zhu‐Hong You
标识
DOI:10.1109/bibm55620.2022.9995674
摘要

Circular RNA (circRNA), a novel endogenous noncoding RNA molecule with a closed-loop structure, can be used as a biomarker for many complex human diseases. Determining the relationship between circRNAs and diseases helps us to understand the diagnosis, treatment, and pathogenesis of complex diseases, which plays a critical role in clinical research. Nevertheless, the discovery of new circRNA-disease associations by wet-lab methods is not only time-consuming and costly but also randomized and blinded, which is also limited to small-scale studies. Thus, there is an urgent need to establish efficient and reliable computational methods to infer potential circRNA-disease associations on a large scale to effectively reduce costs and save time, and avoid high false-positive rates. In this paper, we propose a novel computational method for predicting circRNA-disease association based on the Similarity Assessing Graph Convolution Network (SAGCN) algorithm, which combines the multi-source similarity network constructed by circRNA and disease. Firstly, we fuse the multi-source similarity information of circRNAs and diseases and construct the multi-source similarity network respectively. Then we use the SAGCN algorithm to extract the hidden feature representations of circRNAs and diseases efficiently and objectively in the way of measuring the similarity between different nodes in the network. Finally, the obtained high-level features of circRNAs and diseases are fed to the multilayer perceptron (MLP) classifier for accurate prediction. Using the 5-fold cross-validation method, the AUC scores of the four SAGCN algorithms, on the benchmark circR2Disease dataset are 93.30%, 92.98%, 92.22% and 91.94%, respectively. Furthermore, case studies further validated that the proposed model was supported by biological experiments, and 25 of the top 30 circRNA-disease associations with the highest scores were confirmed by recent literature. Based on these reliable results, it can be anticipated that the proposed model can be used as an effective computational tool to predict circRNA-disease associations and can provide the most promising candidates for biological experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
脑洞疼应助清风扶露采纳,获得10
1秒前
上官若男应助cyy采纳,获得10
1秒前
帅帅发布了新的文献求助10
1秒前
科研通AI5应助huanghuang采纳,获得10
1秒前
fugu0完成签到,获得积分10
2秒前
2秒前
2秒前
灵76发布了新的文献求助10
3秒前
BUN发布了新的文献求助10
3秒前
3秒前
3秒前
Russula_Chu发布了新的文献求助30
3秒前
哒卟刘发布了新的文献求助10
3秒前
科研通AI6应助小铭的男仆采纳,获得10
4秒前
yu发布了新的文献求助10
4秒前
4秒前
4秒前
ncycg完成签到,获得积分10
5秒前
自信天发布了新的文献求助10
5秒前
木辛艺发布了新的文献求助10
5秒前
xiaocoub完成签到,获得积分10
5秒前
卿莞尔完成签到 ,获得积分0
5秒前
量子星尘发布了新的文献求助10
5秒前
重要代丝完成签到,获得积分10
6秒前
jenningseastera应助橙雨采纳,获得10
6秒前
一颗西米子完成签到,获得积分10
6秒前
Owen应助陈瑶采纳,获得10
7秒前
8秒前
8秒前
8秒前
Hoyal_He发布了新的文献求助10
8秒前
落落发布了新的文献求助10
8秒前
王瑞馨发布了新的文献求助10
9秒前
123发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
研友_38KvPZ完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600144
求助须知:如何正确求助?哪些是违规求助? 4010398
关于积分的说明 12416277
捐赠科研通 3690163
什么是DOI,文献DOI怎么找? 2034179
邀请新用户注册赠送积分活动 1067543
科研通“疑难数据库(出版商)”最低求助积分说明 952426