Predicting circRNA-disease associations using similarity assessing graph convolution from multi-source information networks

计算机科学 数据挖掘 人工智能 相似性(几何) 分类器(UML) 图形 机器学习 模式识别(心理学) 理论计算机科学 图像(数学)
作者
Li Yang,Xuegang Hu,Peipei Li,Lei Wang,Zhu‐Hong You
标识
DOI:10.1109/bibm55620.2022.9995674
摘要

Circular RNA (circRNA), a novel endogenous noncoding RNA molecule with a closed-loop structure, can be used as a biomarker for many complex human diseases. Determining the relationship between circRNAs and diseases helps us to understand the diagnosis, treatment, and pathogenesis of complex diseases, which plays a critical role in clinical research. Nevertheless, the discovery of new circRNA-disease associations by wet-lab methods is not only time-consuming and costly but also randomized and blinded, which is also limited to small-scale studies. Thus, there is an urgent need to establish efficient and reliable computational methods to infer potential circRNA-disease associations on a large scale to effectively reduce costs and save time, and avoid high false-positive rates. In this paper, we propose a novel computational method for predicting circRNA-disease association based on the Similarity Assessing Graph Convolution Network (SAGCN) algorithm, which combines the multi-source similarity network constructed by circRNA and disease. Firstly, we fuse the multi-source similarity information of circRNAs and diseases and construct the multi-source similarity network respectively. Then we use the SAGCN algorithm to extract the hidden feature representations of circRNAs and diseases efficiently and objectively in the way of measuring the similarity between different nodes in the network. Finally, the obtained high-level features of circRNAs and diseases are fed to the multilayer perceptron (MLP) classifier for accurate prediction. Using the 5-fold cross-validation method, the AUC scores of the four SAGCN algorithms, on the benchmark circR2Disease dataset are 93.30%, 92.98%, 92.22% and 91.94%, respectively. Furthermore, case studies further validated that the proposed model was supported by biological experiments, and 25 of the top 30 circRNA-disease associations with the highest scores were confirmed by recent literature. Based on these reliable results, it can be anticipated that the proposed model can be used as an effective computational tool to predict circRNA-disease associations and can provide the most promising candidates for biological experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助30
刚刚
William完成签到 ,获得积分10
1秒前
科研通AI5应助yu777采纳,获得10
2秒前
qiqil完成签到,获得积分10
2秒前
3秒前
叶晨洋发布了新的文献求助10
3秒前
jzs完成签到 ,获得积分10
3秒前
4秒前
5秒前
科研通AI5应助123采纳,获得10
8秒前
活泼的从蓉完成签到,获得积分10
9秒前
领导范儿应助ttt采纳,获得10
9秒前
孙文杰完成签到 ,获得积分10
9秒前
MOMO发布了新的文献求助10
9秒前
9秒前
为什么完成签到,获得积分10
10秒前
柏月发布了新的文献求助10
11秒前
充电宝应助手拿大炮采纳,获得10
11秒前
起风完成签到,获得积分10
12秒前
本恩宁完成签到 ,获得积分10
13秒前
14秒前
思源应助MOMO采纳,获得10
16秒前
冷酷的柚子完成签到,获得积分20
17秒前
Wellnemo完成签到,获得积分10
21秒前
传奇3应助柏月采纳,获得10
21秒前
欣慰的以云完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助50
23秒前
123发布了新的文献求助10
24秒前
傅凡桃完成签到,获得积分10
24秒前
24秒前
27秒前
qiqil发布了新的文献求助10
28秒前
29秒前
搜集达人应助MSY采纳,获得10
29秒前
科研通AI5应助杨yy采纳,获得10
29秒前
抑郁小鼠解剖家完成签到,获得积分10
30秒前
八百川发布了新的文献求助10
31秒前
31秒前
风中映冬发布了新的文献求助10
32秒前
niuniu完成签到,获得积分10
33秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5130840
求助须知:如何正确求助?哪些是违规求助? 4332832
关于积分的说明 13498637
捐赠科研通 4169443
什么是DOI,文献DOI怎么找? 2285714
邀请新用户注册赠送积分活动 1286698
关于科研通互助平台的介绍 1227627