Predicting circRNA-disease associations using similarity assessing graph convolution from multi-source information networks

计算机科学 数据挖掘 人工智能 相似性(几何) 分类器(UML) 图形 机器学习 模式识别(心理学) 理论计算机科学 图像(数学)
作者
Li Yang,Xuegang Hu,Peipei Li,Lei Wang,Zhu‐Hong You
标识
DOI:10.1109/bibm55620.2022.9995674
摘要

Circular RNA (circRNA), a novel endogenous noncoding RNA molecule with a closed-loop structure, can be used as a biomarker for many complex human diseases. Determining the relationship between circRNAs and diseases helps us to understand the diagnosis, treatment, and pathogenesis of complex diseases, which plays a critical role in clinical research. Nevertheless, the discovery of new circRNA-disease associations by wet-lab methods is not only time-consuming and costly but also randomized and blinded, which is also limited to small-scale studies. Thus, there is an urgent need to establish efficient and reliable computational methods to infer potential circRNA-disease associations on a large scale to effectively reduce costs and save time, and avoid high false-positive rates. In this paper, we propose a novel computational method for predicting circRNA-disease association based on the Similarity Assessing Graph Convolution Network (SAGCN) algorithm, which combines the multi-source similarity network constructed by circRNA and disease. Firstly, we fuse the multi-source similarity information of circRNAs and diseases and construct the multi-source similarity network respectively. Then we use the SAGCN algorithm to extract the hidden feature representations of circRNAs and diseases efficiently and objectively in the way of measuring the similarity between different nodes in the network. Finally, the obtained high-level features of circRNAs and diseases are fed to the multilayer perceptron (MLP) classifier for accurate prediction. Using the 5-fold cross-validation method, the AUC scores of the four SAGCN algorithms, on the benchmark circR2Disease dataset are 93.30%, 92.98%, 92.22% and 91.94%, respectively. Furthermore, case studies further validated that the proposed model was supported by biological experiments, and 25 of the top 30 circRNA-disease associations with the highest scores were confirmed by recent literature. Based on these reliable results, it can be anticipated that the proposed model can be used as an effective computational tool to predict circRNA-disease associations and can provide the most promising candidates for biological experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南风不竞完成签到,获得积分10
1秒前
赵一发布了新的文献求助10
2秒前
3秒前
yu发布了新的文献求助30
3秒前
justin完成签到,获得积分10
4秒前
搞怪荧完成签到,获得积分10
4秒前
夏天的蜜雪冰城完成签到,获得积分10
4秒前
吴旭东发布了新的文献求助30
4秒前
6秒前
机智马里奥完成签到 ,获得积分10
6秒前
翟闻雨完成签到,获得积分10
6秒前
土木搬砖法律完成签到,获得积分10
8秒前
搞怪荧发布了新的文献求助10
8秒前
小刚完成签到,获得积分0
9秒前
代维健的大黑完成签到,获得积分10
9秒前
10秒前
w0304hf完成签到,获得积分10
10秒前
QWE发布了新的文献求助10
11秒前
鸽子发布了新的文献求助10
11秒前
CodeCraft应助青芒果采纳,获得10
12秒前
hutian完成签到,获得积分10
13秒前
George完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
哈哈哈完成签到,获得积分10
14秒前
HH完成签到,获得积分10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
是我呀小夏完成签到 ,获得积分10
15秒前
斯文败类应助科研通管家采纳,获得30
15秒前
慕青应助科研通管家采纳,获得10
15秒前
WB87应助科研通管家采纳,获得10
15秒前
天天快乐应助科研通管家采纳,获得10
15秒前
爆米花应助科研通管家采纳,获得30
15秒前
无极微光应助科研通管家采纳,获得20
15秒前
殊量完成签到,获得积分10
15秒前
iNk应助科研通管家采纳,获得10
15秒前
小马甲应助科研通管家采纳,获得10
16秒前
上官若男应助科研通管家采纳,获得10
16秒前
搜集达人应助科研通管家采纳,获得10
16秒前
16秒前
在水一方应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418830
求助须知:如何正确求助?哪些是违规求助? 4534433
关于积分的说明 14144216
捐赠科研通 4450723
什么是DOI,文献DOI怎么找? 2441331
邀请新用户注册赠送积分活动 1433062
关于科研通互助平台的介绍 1410502