Multimodal transportation network with cargo containerization technology: Advantages and challenges

集装箱化 运输工程 流量网络 容器(类型理论) 运筹学 布线(电子设计自动化) 计算机科学 工程类 数学优化 数学 计算机网络 机械工程
作者
Xuehao Feng,Rui Song,Weiqiang Yin,Xiaowei Yin,Ruiyou Zhang
出处
期刊:Transport Policy [Elsevier]
卷期号:132: 128-143 被引量:4
标识
DOI:10.1016/j.tranpol.2022.12.006
摘要

Traditional multimodal transportation dispatching of roads, railways, and maritime has been studied for years. This study investigates a bulk cargo distribution problem in a multimodal transportation network considering both the transportation modes of inland waterways and containerization technology. First, we qualitatively discuss the advantages and challenges of transportation using cargo containerization technology from the aspects of transportation cost, time-saving, pollutant emission reduction, and customer preference. Second, a mixed-integer linear programming model is developed, wherein the influence of bridge heights on transportation is considered. The model is validated based on near-practice numerical experiments, and we can obtain the optimal transportation scenario by solving the model, including transportation mode selection, vehicle routing, depot selection, and cargo quantity for containerization. Third, we conduct numerical experiments based on the multimodal transportation network of the Yangtze River in China to discuss the performance of multimodal transportation with containerization technology considerations. The results show that containerization transportation can decrease the total transportation costs for logistics companies under certain parameter configurations. The model and experiments are then extended by considering pollutant emission reductions and time savings, respectively. We uncover the performance of containerization technology by analyzing the Pareto fronts of this technology and traditional bulk cargo transportation. This study elucidates the decision making of logistics companies and government policymaking.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助LSP采纳,获得10
刚刚
问心发布了新的文献求助10
2秒前
科研通AI2S应助请先说你好采纳,获得10
3秒前
薛布慧完成签到 ,获得积分10
5秒前
baozi完成签到,获得积分10
5秒前
宁安完成签到 ,获得积分10
6秒前
俺村俺最牛完成签到 ,获得积分10
6秒前
6秒前
糯米种子完成签到,获得积分10
7秒前
9秒前
joybee完成签到,获得积分0
9秒前
9秒前
10秒前
逗逗完成签到,获得积分10
10秒前
11秒前
自由的无色完成签到 ,获得积分10
11秒前
lsq725完成签到,获得积分10
11秒前
wangayting发布了新的文献求助30
12秒前
13秒前
14秒前
LSP发布了新的文献求助10
15秒前
明亮的代灵完成签到 ,获得积分10
15秒前
15秒前
云云的困困完成签到,获得积分20
17秒前
17秒前
Guo完成签到,获得积分10
17秒前
机灵之云完成签到,获得积分10
18秒前
黄黄完成签到,获得积分0
19秒前
Tomice发布了新的文献求助10
19秒前
猩猩完成签到,获得积分10
19秒前
20秒前
20秒前
完美世界应助花椰菜采纳,获得10
21秒前
飞快的珩发布了新的文献求助10
22秒前
23秒前
啊建完成签到,获得积分10
23秒前
wanci应助EdwardKING采纳,获得10
24秒前
gao完成签到 ,获得积分10
25秒前
25秒前
MG_XSJ完成签到,获得积分10
25秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139810
求助须知:如何正确求助?哪些是违规求助? 2790682
关于积分的说明 7796255
捐赠科研通 2447121
什么是DOI,文献DOI怎么找? 1301574
科研通“疑难数据库(出版商)”最低求助积分说明 626305
版权声明 601176