亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep order-wavelet convolutional variational autoencoder for fault identification of rolling bearing under fluctuating speed conditions

自编码 计算机科学 小波 人工智能 模式识别(心理学) 过度拟合 深度学习 方位(导航) 特征学习 特征(语言学) 人工神经网络 语言学 哲学
作者
Xiaoan Yan,Daoming She,Yadong Xu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:216: 119479-119479 被引量:64
标识
DOI:10.1016/j.eswa.2022.119479
摘要

Because of the complex operating environment of high-end industrial machinery, rolling bearing is generally operated at fluctuating working conditions such as variable speeds or loads, thus enables fault feature information is not obvious. That said, bearing fault identification under fluctuating working conditions are recognized as a very challenging problem. Deep learning blazes a valid route to address this issue by right of strong self-learning performance. Nevertheless, the performance of traditional deep learning model will degrade in the face of the fluctuating data with a sharp rising and heavy external interference. Therefore, to overcome this limitation, this study proposes a novel method named deep order-wavelet convolutional variational autoencoder (DOWCVAE) to identify bearing faults under fluctuating speed conditions, which can improve feature learning ability of a plain convolutional variational autoencoder (CVAE). Within this approach, an improved energy-order analysis with frequency-weighted energy operator (FWEO) is firstly presented to convert the raw time-domain vibration signal into the resampled angle-domain signal to relieve the influence of speed fluctuating and acquire the enhanced order spectrum data. Afterwards, wavelet kernel convolutional block (WKCB) with anti-symmetric real Laplace wavelet (ARLW) is constructed to extract the latent feature information closely related to equipment states from the enhanced order spectrum data via the stacked way layer by layer, which is capable of further promoting learning performance of overall network model and improve its generalizability. In addition, a high-efficiency intelligent optimization algorithm termed as multi-objective gray wolf optimizer (MOGWO) is introduced for choosing automatically optimal wavelet parameters of DOWCVAE model and avoiding negative impact posed by artificially adjusting parameter. Ultimately, the learned latent features are loaded to the softmax classifier to achieve automatic identification of different bearing health states and provide comprehensive diagnosis result. The analysis results from two experiment cases testify the effectiveness of our approach. Quantitatively, average identification accuracy of the proposed approach can reach 99% above, which shows its competitive advantages and is more satisfying as compared to some representative deep learning methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
紫熊发布了新的文献求助10
2秒前
kun完成签到,获得积分20
8秒前
Criminology34应助科研通管家采纳,获得10
12秒前
Criminology34应助科研通管家采纳,获得10
12秒前
Owen应助科研通管家采纳,获得10
12秒前
汉堡包应助jkair采纳,获得10
16秒前
33秒前
tubby发布了新的文献求助10
38秒前
Lucas应助sy采纳,获得10
41秒前
Trivers应助sy采纳,获得20
41秒前
wanci应助tubby采纳,获得10
45秒前
49秒前
55秒前
qqJing发布了新的文献求助10
1分钟前
JamesPei应助江洋大盗采纳,获得10
1分钟前
lalala完成签到,获得积分10
1分钟前
1分钟前
江洋大盗发布了新的文献求助10
1分钟前
江洋大盗完成签到,获得积分10
1分钟前
qqJing完成签到,获得积分10
1分钟前
lanxinge完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
宁不正发布了新的文献求助10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
bkagyin应助宁不正采纳,获得10
2分钟前
小马甲应助LAL百分组合采纳,获得10
2分钟前
李爱国应助LAL百分组合采纳,获得10
2分钟前
大闲鱼铭一完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
jkair发布了新的文献求助10
3分钟前
tubby发布了新的文献求助10
3分钟前
Alanni完成签到 ,获得积分10
3分钟前
思源应助jkair采纳,获得10
3分钟前
乐乐应助tubby采纳,获得10
3分钟前
大个应助科研通管家采纳,获得10
4分钟前
搜集达人应助科研通管家采纳,获得10
4分钟前
Party完成签到,获得积分10
4分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644794
求助须知:如何正确求助?哪些是违规求助? 4765728
关于积分的说明 15025656
捐赠科研通 4803125
什么是DOI,文献DOI怎么找? 2568024
邀请新用户注册赠送积分活动 1525509
关于科研通互助平台的介绍 1485052