Deep order-wavelet convolutional variational autoencoder for fault identification of rolling bearing under fluctuating speed conditions

自编码 计算机科学 小波 人工智能 模式识别(心理学) 过度拟合 深度学习 方位(导航) 特征学习 特征(语言学) 人工神经网络 语言学 哲学
作者
Xiaoan Yan,Daoming She,Yadong Xu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:216: 119479-119479 被引量:64
标识
DOI:10.1016/j.eswa.2022.119479
摘要

Because of the complex operating environment of high-end industrial machinery, rolling bearing is generally operated at fluctuating working conditions such as variable speeds or loads, thus enables fault feature information is not obvious. That said, bearing fault identification under fluctuating working conditions are recognized as a very challenging problem. Deep learning blazes a valid route to address this issue by right of strong self-learning performance. Nevertheless, the performance of traditional deep learning model will degrade in the face of the fluctuating data with a sharp rising and heavy external interference. Therefore, to overcome this limitation, this study proposes a novel method named deep order-wavelet convolutional variational autoencoder (DOWCVAE) to identify bearing faults under fluctuating speed conditions, which can improve feature learning ability of a plain convolutional variational autoencoder (CVAE). Within this approach, an improved energy-order analysis with frequency-weighted energy operator (FWEO) is firstly presented to convert the raw time-domain vibration signal into the resampled angle-domain signal to relieve the influence of speed fluctuating and acquire the enhanced order spectrum data. Afterwards, wavelet kernel convolutional block (WKCB) with anti-symmetric real Laplace wavelet (ARLW) is constructed to extract the latent feature information closely related to equipment states from the enhanced order spectrum data via the stacked way layer by layer, which is capable of further promoting learning performance of overall network model and improve its generalizability. In addition, a high-efficiency intelligent optimization algorithm termed as multi-objective gray wolf optimizer (MOGWO) is introduced for choosing automatically optimal wavelet parameters of DOWCVAE model and avoiding negative impact posed by artificially adjusting parameter. Ultimately, the learned latent features are loaded to the softmax classifier to achieve automatic identification of different bearing health states and provide comprehensive diagnosis result. The analysis results from two experiment cases testify the effectiveness of our approach. Quantitatively, average identification accuracy of the proposed approach can reach 99% above, which shows its competitive advantages and is more satisfying as compared to some representative deep learning methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aoao完成签到,获得积分20
1秒前
学术芽完成签到,获得积分10
2秒前
希望天下0贩的0应助Mia2采纳,获得20
2秒前
2秒前
3秒前
3秒前
6秒前
6秒前
aliderichang发布了新的文献求助10
6秒前
Tsuki完成签到,获得积分10
6秒前
吴彦祖发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
9秒前
yan完成签到,获得积分10
9秒前
9秒前
Jasper应助冬藏采纳,获得10
9秒前
9秒前
weiqi发布了新的文献求助10
10秒前
黄紫红完成签到 ,获得积分10
10秒前
炙热的萤应助吴彦祖采纳,获得10
11秒前
小马发布了新的文献求助30
11秒前
牢大完成签到,获得积分10
12秒前
whm121316Doctor完成签到,获得积分10
12秒前
12秒前
李健应助墨尔本的翡翠采纳,获得10
13秒前
GYY完成签到,获得积分10
13秒前
CHSLN完成签到 ,获得积分10
13秒前
周全敏完成签到 ,获得积分10
14秒前
mirai发布了新的文献求助10
14秒前
14秒前
chouchou发布了新的文献求助10
16秒前
我是老大应助CMCM采纳,获得40
16秒前
优美紫槐应助nana湘采纳,获得20
17秒前
小丸子完成签到 ,获得积分10
19秒前
水123发布了新的文献求助10
19秒前
arrebol发布了新的文献求助10
19秒前
DD0066完成签到,获得积分10
20秒前
Jasper应助feifanyang采纳,获得10
20秒前
烟花应助科研通管家采纳,获得10
21秒前
zhonglv7应助科研通管家采纳,获得10
21秒前
聪明凡之应助科研通管家采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603927
求助须知:如何正确求助?哪些是违规求助? 4688787
关于积分的说明 14856110
捐赠科研通 4695468
什么是DOI,文献DOI怎么找? 2541034
邀请新用户注册赠送积分活动 1507185
关于科研通互助平台的介绍 1471832