已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep order-wavelet convolutional variational autoencoder for fault identification of rolling bearing under fluctuating speed conditions

自编码 计算机科学 小波 人工智能 模式识别(心理学) 过度拟合 深度学习 方位(导航) 特征学习 特征(语言学) 人工神经网络 语言学 哲学
作者
Xiaoan Yan,Daoming She,Yadong Xu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:216: 119479-119479 被引量:64
标识
DOI:10.1016/j.eswa.2022.119479
摘要

Because of the complex operating environment of high-end industrial machinery, rolling bearing is generally operated at fluctuating working conditions such as variable speeds or loads, thus enables fault feature information is not obvious. That said, bearing fault identification under fluctuating working conditions are recognized as a very challenging problem. Deep learning blazes a valid route to address this issue by right of strong self-learning performance. Nevertheless, the performance of traditional deep learning model will degrade in the face of the fluctuating data with a sharp rising and heavy external interference. Therefore, to overcome this limitation, this study proposes a novel method named deep order-wavelet convolutional variational autoencoder (DOWCVAE) to identify bearing faults under fluctuating speed conditions, which can improve feature learning ability of a plain convolutional variational autoencoder (CVAE). Within this approach, an improved energy-order analysis with frequency-weighted energy operator (FWEO) is firstly presented to convert the raw time-domain vibration signal into the resampled angle-domain signal to relieve the influence of speed fluctuating and acquire the enhanced order spectrum data. Afterwards, wavelet kernel convolutional block (WKCB) with anti-symmetric real Laplace wavelet (ARLW) is constructed to extract the latent feature information closely related to equipment states from the enhanced order spectrum data via the stacked way layer by layer, which is capable of further promoting learning performance of overall network model and improve its generalizability. In addition, a high-efficiency intelligent optimization algorithm termed as multi-objective gray wolf optimizer (MOGWO) is introduced for choosing automatically optimal wavelet parameters of DOWCVAE model and avoiding negative impact posed by artificially adjusting parameter. Ultimately, the learned latent features are loaded to the softmax classifier to achieve automatic identification of different bearing health states and provide comprehensive diagnosis result. The analysis results from two experiment cases testify the effectiveness of our approach. Quantitatively, average identification accuracy of the proposed approach can reach 99% above, which shows its competitive advantages and is more satisfying as compared to some representative deep learning methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助zw0907采纳,获得10
刚刚
5秒前
faaami应助梦清雅采纳,获得10
6秒前
加贝峥完成签到 ,获得积分10
6秒前
一er完成签到,获得积分20
10秒前
薛不会发布了新的文献求助10
12秒前
Owen应助昏睡的乌龟采纳,获得10
12秒前
16秒前
bibo完成签到 ,获得积分10
17秒前
17秒前
八个脑袋完成签到,获得积分20
17秒前
jiwoong发布了新的文献求助10
18秒前
21秒前
jike发布了新的文献求助10
24秒前
hhh完成签到 ,获得积分10
25秒前
波霎完成签到,获得积分10
25秒前
guoze完成签到,获得积分10
26秒前
易如反掌完成签到,获得积分20
26秒前
ligy完成签到,获得积分10
27秒前
zds完成签到,获得积分10
27秒前
27秒前
28秒前
faaami应助苏源智采纳,获得10
29秒前
Orange应助小徐医生采纳,获得10
31秒前
喻贡金发布了新的文献求助10
32秒前
Wcy发布了新的文献求助10
32秒前
酷波er应助ptang采纳,获得10
33秒前
zsz完成签到,获得积分10
35秒前
鲤鱼惜霜发布了新的文献求助30
35秒前
37秒前
38秒前
灵犀完成签到 ,获得积分10
40秒前
十有五发布了新的文献求助10
40秒前
40秒前
荔枝多酚完成签到,获得积分10
41秒前
42秒前
马翔宇发布了新的文献求助10
43秒前
wangdongy发布了新的文献求助10
44秒前
白茶清欢完成签到 ,获得积分10
44秒前
bibo发布了新的文献求助10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Adult Development and Aging, 2nd Canadian Edition 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5567958
求助须知:如何正确求助?哪些是违规求助? 4652476
关于积分的说明 14701138
捐赠科研通 4594306
什么是DOI,文献DOI怎么找? 2520819
邀请新用户注册赠送积分活动 1492790
关于科研通互助平台的介绍 1463645