Deep order-wavelet convolutional variational autoencoder for fault identification of rolling bearing under fluctuating speed conditions

自编码 计算机科学 小波 人工智能 模式识别(心理学) 过度拟合 深度学习 方位(导航) 特征学习 特征(语言学) 人工神经网络 语言学 哲学
作者
Xiaoan Yan,Daoming She,Yadong Xu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:216: 119479-119479 被引量:64
标识
DOI:10.1016/j.eswa.2022.119479
摘要

Because of the complex operating environment of high-end industrial machinery, rolling bearing is generally operated at fluctuating working conditions such as variable speeds or loads, thus enables fault feature information is not obvious. That said, bearing fault identification under fluctuating working conditions are recognized as a very challenging problem. Deep learning blazes a valid route to address this issue by right of strong self-learning performance. Nevertheless, the performance of traditional deep learning model will degrade in the face of the fluctuating data with a sharp rising and heavy external interference. Therefore, to overcome this limitation, this study proposes a novel method named deep order-wavelet convolutional variational autoencoder (DOWCVAE) to identify bearing faults under fluctuating speed conditions, which can improve feature learning ability of a plain convolutional variational autoencoder (CVAE). Within this approach, an improved energy-order analysis with frequency-weighted energy operator (FWEO) is firstly presented to convert the raw time-domain vibration signal into the resampled angle-domain signal to relieve the influence of speed fluctuating and acquire the enhanced order spectrum data. Afterwards, wavelet kernel convolutional block (WKCB) with anti-symmetric real Laplace wavelet (ARLW) is constructed to extract the latent feature information closely related to equipment states from the enhanced order spectrum data via the stacked way layer by layer, which is capable of further promoting learning performance of overall network model and improve its generalizability. In addition, a high-efficiency intelligent optimization algorithm termed as multi-objective gray wolf optimizer (MOGWO) is introduced for choosing automatically optimal wavelet parameters of DOWCVAE model and avoiding negative impact posed by artificially adjusting parameter. Ultimately, the learned latent features are loaded to the softmax classifier to achieve automatic identification of different bearing health states and provide comprehensive diagnosis result. The analysis results from two experiment cases testify the effectiveness of our approach. Quantitatively, average identification accuracy of the proposed approach can reach 99% above, which shows its competitive advantages and is more satisfying as compared to some representative deep learning methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
香蕉大侠完成签到 ,获得积分10
2秒前
正直的松鼠完成签到 ,获得积分0
5秒前
lll完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
zhaoyaoshi完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
cheng完成签到,获得积分10
8秒前
绵羊座鸭梨完成签到 ,获得积分10
12秒前
中恐完成签到,获得积分0
14秒前
林夕完成签到 ,获得积分10
17秒前
20秒前
小西完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助30
27秒前
量子星尘发布了新的文献求助10
28秒前
去码头整点薯条完成签到 ,获得积分10
28秒前
时代更迭完成签到 ,获得积分10
29秒前
30秒前
652183758完成签到 ,获得积分10
30秒前
活力酒窝完成签到 ,获得积分10
34秒前
lizuosheng1972完成签到,获得积分10
36秒前
38秒前
42秒前
量子星尘发布了新的文献求助10
42秒前
42秒前
量子星尘发布了新的文献求助10
44秒前
46秒前
andre20完成签到 ,获得积分10
47秒前
蔡从安完成签到,获得积分20
50秒前
爱学习的结香酱完成签到 ,获得积分20
54秒前
量子星尘发布了新的文献求助10
55秒前
魁梧的觅松完成签到 ,获得积分10
55秒前
青水完成签到 ,获得积分10
56秒前
57秒前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
lorentzh完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5764867
求助须知:如何正确求助?哪些是违规求助? 5555863
关于积分的说明 15406689
捐赠科研通 4899790
什么是DOI,文献DOI怎么找? 2635997
邀请新用户注册赠送积分活动 1584181
关于科研通互助平台的介绍 1539489