Deep order-wavelet convolutional variational autoencoder for fault identification of rolling bearing under fluctuating speed conditions

自编码 计算机科学 小波 人工智能 模式识别(心理学) 过度拟合 深度学习 方位(导航) 特征学习 特征(语言学) 人工神经网络 语言学 哲学
作者
Xiaoan Yan,Daoming She,Yadong Xu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:216: 119479-119479 被引量:64
标识
DOI:10.1016/j.eswa.2022.119479
摘要

Because of the complex operating environment of high-end industrial machinery, rolling bearing is generally operated at fluctuating working conditions such as variable speeds or loads, thus enables fault feature information is not obvious. That said, bearing fault identification under fluctuating working conditions are recognized as a very challenging problem. Deep learning blazes a valid route to address this issue by right of strong self-learning performance. Nevertheless, the performance of traditional deep learning model will degrade in the face of the fluctuating data with a sharp rising and heavy external interference. Therefore, to overcome this limitation, this study proposes a novel method named deep order-wavelet convolutional variational autoencoder (DOWCVAE) to identify bearing faults under fluctuating speed conditions, which can improve feature learning ability of a plain convolutional variational autoencoder (CVAE). Within this approach, an improved energy-order analysis with frequency-weighted energy operator (FWEO) is firstly presented to convert the raw time-domain vibration signal into the resampled angle-domain signal to relieve the influence of speed fluctuating and acquire the enhanced order spectrum data. Afterwards, wavelet kernel convolutional block (WKCB) with anti-symmetric real Laplace wavelet (ARLW) is constructed to extract the latent feature information closely related to equipment states from the enhanced order spectrum data via the stacked way layer by layer, which is capable of further promoting learning performance of overall network model and improve its generalizability. In addition, a high-efficiency intelligent optimization algorithm termed as multi-objective gray wolf optimizer (MOGWO) is introduced for choosing automatically optimal wavelet parameters of DOWCVAE model and avoiding negative impact posed by artificially adjusting parameter. Ultimately, the learned latent features are loaded to the softmax classifier to achieve automatic identification of different bearing health states and provide comprehensive diagnosis result. The analysis results from two experiment cases testify the effectiveness of our approach. Quantitatively, average identification accuracy of the proposed approach can reach 99% above, which shows its competitive advantages and is more satisfying as compared to some representative deep learning methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lulu发布了新的文献求助30
2秒前
江桥zy完成签到,获得积分10
2秒前
不爱吃雪糕应助小兵采纳,获得10
3秒前
JamesPei应助九湖夷上采纳,获得10
3秒前
战战兢兢的失眠完成签到 ,获得积分10
4秒前
caicai完成签到,获得积分10
4秒前
Adam_Lan发布了新的文献求助10
5秒前
5秒前
迷路雨寒应助卤猪蹄采纳,获得10
6秒前
暴躁的芷巧完成签到,获得积分10
6秒前
6秒前
Young完成签到,获得积分10
6秒前
7秒前
星辰大海应助简单的乐驹采纳,获得10
7秒前
8秒前
嘿嘿啊哈给嘿嘿啊哈的求助进行了留言
8秒前
酷炫的不二完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
xh93完成签到,获得积分20
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
专注的棉花糖完成签到,获得积分10
11秒前
蓝天应助科研通管家采纳,获得10
12秒前
Mic应助科研通管家采纳,获得10
12秒前
无花果应助科研通管家采纳,获得10
12秒前
上官若男应助科研通管家采纳,获得10
12秒前
小蘑菇应助科研通管家采纳,获得10
12秒前
Return应助科研通管家采纳,获得10
12秒前
Mic应助科研通管家采纳,获得10
12秒前
纯情的浩然完成签到,获得积分10
13秒前
在水一方应助科研通管家采纳,获得10
13秒前
英姑应助科研通管家采纳,获得10
13秒前
Mic应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
大模型应助科研通管家采纳,获得10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695061
求助须知:如何正确求助?哪些是违规求助? 5099914
关于积分的说明 15215127
捐赠科研通 4851509
什么是DOI,文献DOI怎么找? 2602393
邀请新用户注册赠送积分活动 1554207
关于科研通互助平台的介绍 1512167