已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep order-wavelet convolutional variational autoencoder for fault identification of rolling bearing under fluctuating speed conditions

自编码 计算机科学 小波 人工智能 模式识别(心理学) 过度拟合 深度学习 方位(导航) 特征学习 特征(语言学) 人工神经网络 语言学 哲学
作者
Xiaoan Yan,Daoming She,Yadong Xu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:216: 119479-119479 被引量:64
标识
DOI:10.1016/j.eswa.2022.119479
摘要

Because of the complex operating environment of high-end industrial machinery, rolling bearing is generally operated at fluctuating working conditions such as variable speeds or loads, thus enables fault feature information is not obvious. That said, bearing fault identification under fluctuating working conditions are recognized as a very challenging problem. Deep learning blazes a valid route to address this issue by right of strong self-learning performance. Nevertheless, the performance of traditional deep learning model will degrade in the face of the fluctuating data with a sharp rising and heavy external interference. Therefore, to overcome this limitation, this study proposes a novel method named deep order-wavelet convolutional variational autoencoder (DOWCVAE) to identify bearing faults under fluctuating speed conditions, which can improve feature learning ability of a plain convolutional variational autoencoder (CVAE). Within this approach, an improved energy-order analysis with frequency-weighted energy operator (FWEO) is firstly presented to convert the raw time-domain vibration signal into the resampled angle-domain signal to relieve the influence of speed fluctuating and acquire the enhanced order spectrum data. Afterwards, wavelet kernel convolutional block (WKCB) with anti-symmetric real Laplace wavelet (ARLW) is constructed to extract the latent feature information closely related to equipment states from the enhanced order spectrum data via the stacked way layer by layer, which is capable of further promoting learning performance of overall network model and improve its generalizability. In addition, a high-efficiency intelligent optimization algorithm termed as multi-objective gray wolf optimizer (MOGWO) is introduced for choosing automatically optimal wavelet parameters of DOWCVAE model and avoiding negative impact posed by artificially adjusting parameter. Ultimately, the learned latent features are loaded to the softmax classifier to achieve automatic identification of different bearing health states and provide comprehensive diagnosis result. The analysis results from two experiment cases testify the effectiveness of our approach. Quantitatively, average identification accuracy of the proposed approach can reach 99% above, which shows its competitive advantages and is more satisfying as compared to some representative deep learning methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qinxiang完成签到,获得积分10
刚刚
刚刚
Provence完成签到,获得积分10
1秒前
1秒前
润柏海完成签到 ,获得积分10
1秒前
刘可完成签到 ,获得积分10
2秒前
开放从波发布了新的文献求助10
4秒前
闻老头菊花碳完成签到,获得积分10
5秒前
自然听兰发布了新的文献求助10
5秒前
嘻嘻嘻发布了新的文献求助10
6秒前
可爱紫文完成签到 ,获得积分10
6秒前
6秒前
yoyo完成签到 ,获得积分10
7秒前
7秒前
酷波er应助shuiyu采纳,获得10
7秒前
tuanheqi发布了新的文献求助100
7秒前
忽远忽近的她完成签到 ,获得积分10
9秒前
等待的忆枫完成签到,获得积分10
10秒前
lxc发布了新的文献求助10
10秒前
xiaofan_www完成签到,获得积分10
10秒前
田様应助勤奋的熊猫采纳,获得10
11秒前
12秒前
12秒前
天才J完成签到,获得积分10
13秒前
云禾完成签到,获得积分10
18秒前
pppcpppdpppy完成签到,获得积分10
18秒前
18秒前
孙意冉完成签到,获得积分10
19秒前
fymshh发布了新的文献求助10
19秒前
treetree完成签到 ,获得积分10
19秒前
19秒前
Forez发布了新的文献求助10
20秒前
HaCat完成签到,获得积分10
20秒前
21秒前
22秒前
loser完成签到 ,获得积分10
22秒前
浮浮世世发布了新的文献求助10
22秒前
lxc完成签到,获得积分10
23秒前
24秒前
黑兔子发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650331
求助须知:如何正确求助?哪些是违规求助? 4780577
关于积分的说明 15051956
捐赠科研通 4809289
什么是DOI,文献DOI怎么找? 2572125
邀请新用户注册赠送积分活动 1528281
关于科研通互助平台的介绍 1487161