Deep order-wavelet convolutional variational autoencoder for fault identification of rolling bearing under fluctuating speed conditions

自编码 计算机科学 小波 人工智能 模式识别(心理学) 过度拟合 深度学习 方位(导航) 特征学习 特征(语言学) 人工神经网络 语言学 哲学
作者
Xiaoan Yan,Daoming She,Yadong Xu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:216: 119479-119479 被引量:64
标识
DOI:10.1016/j.eswa.2022.119479
摘要

Because of the complex operating environment of high-end industrial machinery, rolling bearing is generally operated at fluctuating working conditions such as variable speeds or loads, thus enables fault feature information is not obvious. That said, bearing fault identification under fluctuating working conditions are recognized as a very challenging problem. Deep learning blazes a valid route to address this issue by right of strong self-learning performance. Nevertheless, the performance of traditional deep learning model will degrade in the face of the fluctuating data with a sharp rising and heavy external interference. Therefore, to overcome this limitation, this study proposes a novel method named deep order-wavelet convolutional variational autoencoder (DOWCVAE) to identify bearing faults under fluctuating speed conditions, which can improve feature learning ability of a plain convolutional variational autoencoder (CVAE). Within this approach, an improved energy-order analysis with frequency-weighted energy operator (FWEO) is firstly presented to convert the raw time-domain vibration signal into the resampled angle-domain signal to relieve the influence of speed fluctuating and acquire the enhanced order spectrum data. Afterwards, wavelet kernel convolutional block (WKCB) with anti-symmetric real Laplace wavelet (ARLW) is constructed to extract the latent feature information closely related to equipment states from the enhanced order spectrum data via the stacked way layer by layer, which is capable of further promoting learning performance of overall network model and improve its generalizability. In addition, a high-efficiency intelligent optimization algorithm termed as multi-objective gray wolf optimizer (MOGWO) is introduced for choosing automatically optimal wavelet parameters of DOWCVAE model and avoiding negative impact posed by artificially adjusting parameter. Ultimately, the learned latent features are loaded to the softmax classifier to achieve automatic identification of different bearing health states and provide comprehensive diagnosis result. The analysis results from two experiment cases testify the effectiveness of our approach. Quantitatively, average identification accuracy of the proposed approach can reach 99% above, which shows its competitive advantages and is more satisfying as compared to some representative deep learning methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
seven完成签到,获得积分10
刚刚
Elite发布了新的文献求助30
1秒前
3秒前
4秒前
11235发布了新的文献求助10
6秒前
萧晓完成签到 ,获得积分10
6秒前
药药55完成签到,获得积分10
6秒前
donk发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
8秒前
Arthur完成签到,获得积分10
8秒前
18275412695发布了新的文献求助10
9秒前
10秒前
风清扬发布了新的文献求助10
10秒前
11秒前
juqiu发布了新的文献求助10
11秒前
13秒前
13秒前
思源应助Hazelwf采纳,获得10
14秒前
喜喜喜嘻嘻嘻完成签到 ,获得积分10
14秒前
迷路竹完成签到,获得积分10
14秒前
shanyuyulai完成签到 ,获得积分10
15秒前
领导范儿应助juqiu采纳,获得10
15秒前
璐璐完成签到,获得积分10
15秒前
15秒前
LJL完成签到,获得积分20
16秒前
兔子完成签到,获得积分10
16秒前
super chan发布了新的文献求助10
17秒前
drwlr发布了新的文献求助10
18秒前
Owen应助5114采纳,获得10
20秒前
gong完成签到,获得积分10
20秒前
1212发布了新的文献求助10
20秒前
小田完成签到 ,获得积分10
21秒前
依依发布了新的文献求助10
22秒前
小蘑菇应助陈泽宇采纳,获得10
26秒前
26秒前
PhDLi完成签到,获得积分10
27秒前
buno应助小马采纳,获得10
27秒前
fuiee完成签到,获得积分10
28秒前
蓝天应助麻辣小龙虾采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604106
求助须知:如何正确求助?哪些是违规求助? 4688956
关于积分的说明 14857141
捐赠科研通 4696700
什么是DOI,文献DOI怎么找? 2541175
邀请新用户注册赠送积分活动 1507328
关于科研通互助平台的介绍 1471851