Deep order-wavelet convolutional variational autoencoder for fault identification of rolling bearing under fluctuating speed conditions

自编码 计算机科学 小波 人工智能 模式识别(心理学) 过度拟合 深度学习 方位(导航) 特征学习 特征(语言学) 人工神经网络 语言学 哲学
作者
Xiaoan Yan,Daoming She,Yadong Xu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:216: 119479-119479 被引量:64
标识
DOI:10.1016/j.eswa.2022.119479
摘要

Because of the complex operating environment of high-end industrial machinery, rolling bearing is generally operated at fluctuating working conditions such as variable speeds or loads, thus enables fault feature information is not obvious. That said, bearing fault identification under fluctuating working conditions are recognized as a very challenging problem. Deep learning blazes a valid route to address this issue by right of strong self-learning performance. Nevertheless, the performance of traditional deep learning model will degrade in the face of the fluctuating data with a sharp rising and heavy external interference. Therefore, to overcome this limitation, this study proposes a novel method named deep order-wavelet convolutional variational autoencoder (DOWCVAE) to identify bearing faults under fluctuating speed conditions, which can improve feature learning ability of a plain convolutional variational autoencoder (CVAE). Within this approach, an improved energy-order analysis with frequency-weighted energy operator (FWEO) is firstly presented to convert the raw time-domain vibration signal into the resampled angle-domain signal to relieve the influence of speed fluctuating and acquire the enhanced order spectrum data. Afterwards, wavelet kernel convolutional block (WKCB) with anti-symmetric real Laplace wavelet (ARLW) is constructed to extract the latent feature information closely related to equipment states from the enhanced order spectrum data via the stacked way layer by layer, which is capable of further promoting learning performance of overall network model and improve its generalizability. In addition, a high-efficiency intelligent optimization algorithm termed as multi-objective gray wolf optimizer (MOGWO) is introduced for choosing automatically optimal wavelet parameters of DOWCVAE model and avoiding negative impact posed by artificially adjusting parameter. Ultimately, the learned latent features are loaded to the softmax classifier to achieve automatic identification of different bearing health states and provide comprehensive diagnosis result. The analysis results from two experiment cases testify the effectiveness of our approach. Quantitatively, average identification accuracy of the proposed approach can reach 99% above, which shows its competitive advantages and is more satisfying as compared to some representative deep learning methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无敌钢琴大王666完成签到,获得积分10
1秒前
赵海锋发布了新的文献求助10
3秒前
Akim应助糟糕的铁锤采纳,获得30
3秒前
小柚完成签到,获得积分10
4秒前
5秒前
旦皋发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
wyf1996发布了新的文献求助30
9秒前
搜集达人应助君君采纳,获得10
12秒前
深情安青应助唾液淀粉肠采纳,获得10
12秒前
jjjdcjcj完成签到,获得积分10
13秒前
何处芳歇完成签到,获得积分10
13秒前
14秒前
zhouzhou应助谨慎的寒松采纳,获得10
14秒前
小马甲应助谨慎的寒松采纳,获得10
15秒前
汉堡包应助谨慎的寒松采纳,获得20
15秒前
南北哈基咪完成签到 ,获得积分10
15秒前
15秒前
852应助科研通管家采纳,获得10
15秒前
深情安青应助科研通管家采纳,获得10
15秒前
斯文败类应助露露采纳,获得10
15秒前
大个应助科研通管家采纳,获得10
16秒前
深情安青应助科研通管家采纳,获得10
16秒前
curtisness应助科研通管家采纳,获得10
16秒前
852应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
我是老大应助科研通管家采纳,获得10
16秒前
大个应助科研通管家采纳,获得10
16秒前
大龙哥886应助科研通管家采纳,获得10
16秒前
深情安青应助科研通管家采纳,获得10
16秒前
香菜大王完成签到 ,获得积分10
16秒前
桐桐应助科研通管家采纳,获得10
16秒前
curtisness应助科研通管家采纳,获得10
16秒前
顾矜应助科研通管家采纳,获得10
16秒前
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
英姑应助陈冠羽采纳,获得30
16秒前
思源应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736480
求助须知:如何正确求助?哪些是违规求助? 5366181
关于积分的说明 15333226
捐赠科研通 4880292
什么是DOI,文献DOI怎么找? 2622803
邀请新用户注册赠送积分活动 1571698
关于科研通互助平台的介绍 1528511