已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep order-wavelet convolutional variational autoencoder for fault identification of rolling bearing under fluctuating speed conditions

自编码 计算机科学 小波 人工智能 模式识别(心理学) 过度拟合 深度学习 方位(导航) 特征学习 特征(语言学) 人工神经网络 语言学 哲学
作者
Xiaoan Yan,Daoming She,Yadong Xu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:216: 119479-119479 被引量:64
标识
DOI:10.1016/j.eswa.2022.119479
摘要

Because of the complex operating environment of high-end industrial machinery, rolling bearing is generally operated at fluctuating working conditions such as variable speeds or loads, thus enables fault feature information is not obvious. That said, bearing fault identification under fluctuating working conditions are recognized as a very challenging problem. Deep learning blazes a valid route to address this issue by right of strong self-learning performance. Nevertheless, the performance of traditional deep learning model will degrade in the face of the fluctuating data with a sharp rising and heavy external interference. Therefore, to overcome this limitation, this study proposes a novel method named deep order-wavelet convolutional variational autoencoder (DOWCVAE) to identify bearing faults under fluctuating speed conditions, which can improve feature learning ability of a plain convolutional variational autoencoder (CVAE). Within this approach, an improved energy-order analysis with frequency-weighted energy operator (FWEO) is firstly presented to convert the raw time-domain vibration signal into the resampled angle-domain signal to relieve the influence of speed fluctuating and acquire the enhanced order spectrum data. Afterwards, wavelet kernel convolutional block (WKCB) with anti-symmetric real Laplace wavelet (ARLW) is constructed to extract the latent feature information closely related to equipment states from the enhanced order spectrum data via the stacked way layer by layer, which is capable of further promoting learning performance of overall network model and improve its generalizability. In addition, a high-efficiency intelligent optimization algorithm termed as multi-objective gray wolf optimizer (MOGWO) is introduced for choosing automatically optimal wavelet parameters of DOWCVAE model and avoiding negative impact posed by artificially adjusting parameter. Ultimately, the learned latent features are loaded to the softmax classifier to achieve automatic identification of different bearing health states and provide comprehensive diagnosis result. The analysis results from two experiment cases testify the effectiveness of our approach. Quantitatively, average identification accuracy of the proposed approach can reach 99% above, which shows its competitive advantages and is more satisfying as compared to some representative deep learning methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
复杂妙海完成签到,获得积分10
1秒前
领导范儿应助Hung采纳,获得10
4秒前
独特微笑发布了新的文献求助100
7秒前
kexinLiu完成签到,获得积分20
11秒前
13秒前
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
13秒前
汉堡包应助科研通管家采纳,获得10
13秒前
丘比特应助科研通管家采纳,获得10
13秒前
GG发布了新的文献求助10
14秒前
fly完成签到 ,获得积分10
17秒前
小哈完成签到 ,获得积分10
18秒前
可爱的函函应助芋头采纳,获得10
18秒前
CodeCraft应助Vanity采纳,获得10
18秒前
kexinLiu发布了新的文献求助10
22秒前
丹佛发布了新的文献求助10
24秒前
Lj发布了新的文献求助10
26秒前
李健应助点点采纳,获得10
32秒前
34秒前
36秒前
J1n9z完成签到,获得积分10
36秒前
37秒前
Vanity发布了新的文献求助10
38秒前
42秒前
Lj完成签到,获得积分10
44秒前
44秒前
46秒前
47秒前
苗苗043完成签到,获得积分10
48秒前
GG发布了新的文献求助20
49秒前
点点发布了新的文献求助10
50秒前
orixero应助一只西瓜茶采纳,获得30
50秒前
liu bo完成签到,获得积分0
57秒前
58秒前
一只西瓜茶完成签到,获得积分20
1分钟前
Signs完成签到 ,获得积分10
1分钟前
程昱完成签到 ,获得积分10
1分钟前
1分钟前
东东发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5787957
求助须知:如何正确求助?哪些是违规求助? 5703228
关于积分的说明 15473130
捐赠科研通 4916169
什么是DOI,文献DOI怎么找? 2646223
邀请新用户注册赠送积分活动 1593876
关于科研通互助平台的介绍 1548209