Estimating cooling loads of Arizona State University buildings using microclimate data and machine learning

小气候 建筑能耗模拟 环境科学 冷负荷 气象学 基线(sea) 模拟 计算机科学 工程类 高效能源利用 空调 能源性能 机械工程 地理 地质学 考古 电气工程 海洋学
作者
Ali Alyakoob,Sherly Hartono,Trevor Johnson,Ariane Middel
出处
期刊:Journal of building engineering [Elsevier BV]
卷期号:64: 105705-105705 被引量:2
标识
DOI:10.1016/j.jobe.2022.105705
摘要

In hot arid urban climates, building cooling equipment consumes the greatest share of energy out of all building end-use equipment. For existing buildings, dynamic system-based building energy simulation tools have provided valuable information on the impact of microclimates on cooling energy use. However, such models require in-depth information on building model parameters and often suffer from modeler bias even when sufficient calibration indices are satisfied. This study presents a data-driven approach for predicting the cooling loads of three university buildings in Arizona using simulated microclimate data. A microclimate model ENVI-met generated the input micro-scale weather data for each building. The ENVI-met simulation was validated using in-situ observations during the summer of 2018. Multiple machine learning algorithms were implemented. A final model was selected and used as baseline to predict cooling loads for each building in the dataset. The model predicts chill water tons per square meter using microclimate variables that include mean air temperature, mean absolute humidity, shading levels, and direct shortwave radiation. The black-box model was explained using an advanced machine learning model interpretation library in Python: SHAP. The baseline model predicted cooling loads with a prediction accuracy score of 0.98 using the tree-based algorithm Random Forest. Sensitivity analyses and scenario results showed that cooler microclimates reduced cooling loads for the modeled buildings. The developed framework will be used in future study extensions to explore the impacts of simulated microclimate scenarios generated by ENVI-met.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
5秒前
tttp发布了新的文献求助10
5秒前
6秒前
蓝风铃完成签到 ,获得积分10
6秒前
LEMONS应助俏皮的惜灵采纳,获得10
6秒前
快乐的小康完成签到,获得积分10
6秒前
7秒前
zcydbttj2011完成签到 ,获得积分10
7秒前
sxy完成签到,获得积分10
9秒前
李李李完成签到 ,获得积分10
10秒前
小s发布了新的文献求助10
11秒前
感性的芹菜完成签到,获得积分10
12秒前
13秒前
Rain发布了新的文献求助10
14秒前
逃学打游戏完成签到,获得积分10
14秒前
啊爱普完成签到 ,获得积分10
15秒前
清脆剑封完成签到,获得积分20
15秒前
16秒前
小s完成签到,获得积分10
17秒前
auraro完成签到 ,获得积分10
18秒前
细嗅蔷薇完成签到,获得积分10
19秒前
21秒前
柳威发布了新的文献求助10
22秒前
Owen应助Vicky采纳,获得10
23秒前
徐恭关注了科研通微信公众号
24秒前
koukou发布了新的文献求助10
24秒前
隐形曼青应助MXiV采纳,获得10
28秒前
29秒前
宓函完成签到,获得积分10
29秒前
29秒前
yookia应助lewis17采纳,获得10
29秒前
32秒前
川川子发布了新的文献求助10
33秒前
石晶晶发布了新的文献求助10
33秒前
柯一一应助1234采纳,获得10
34秒前
Jro关闭了Jro文献求助
35秒前
Ivy完成签到,获得积分20
35秒前
Duxize发布了新的文献求助10
35秒前
熊猫小肿完成签到,获得积分10
35秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954395
求助须知:如何正确求助?哪些是违规求助? 3500338
关于积分的说明 11099177
捐赠科研通 3230855
什么是DOI,文献DOI怎么找? 1786171
邀请新用户注册赠送积分活动 869840
科研通“疑难数据库(出版商)”最低求助积分说明 801673