Improving the Generalization of MAML in Few-Shot Classification via Bi-Level Constraint

初始化 计算机科学 过度拟合 判别式 一般化 人工智能 机器学习 特征(语言学) 模式识别(心理学) 数学 人工神经网络 语言学 数学分析 哲学 程序设计语言
作者
Yuanjie Shao,Wenxiao Wu,Xinge You,Changxin Gao,Nong Sang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (7): 3284-3295 被引量:18
标识
DOI:10.1109/tcsvt.2022.3232717
摘要

Few-shot classification (FSC), which aims to identify novel classes in the presence of a few labeled samples, has drawn vast attention in recent years. One of the representative few-shot classification methods is model-agnostic meta-learning (MAML), which focuses on learning an initialization that can quickly adapt to novel categories with a few annotated samples. However, due to insufficient samples, MAML can easily fall into the dilemma of overfitting. Most existing MAML-based methods either improve the inner-loop update rule to achieve better generalization or constrain the outer-loop optimization to learn a more desirable initialization, without considering improving the two optimization processes jointly, resulting in unsatisfactory performance. In this paper, we propose a bi-level constrained MAML (BLC-MAML) method for few-shot classification. Specifically, in the inner-loop optimization, we introduce a supervised contrastive loss to constrain the adaptation procedure, which can effectively increase the intra-class aggregation and inter-class separability, thus improving the generalization of the adapted model. In the case of the outer loop, we propose a cross-task metric (CTM) loss to constrain the adapted model to perform well on the different few-shot task. The CTM loss can enforce the adapted model to learn more discriminative and generalized feature representations, further boosting the generalization of the learned initialization. By simultaneously constraining the bi-level optimization procedure, the proposed BLC-MAML can learn an initialization with better generalization. Extensive experiments on several FSC benchmarks show that our method can effectively improve the performance of MAML under both the within-domain and cross-domain settings, and also perform favorably against the state-of-the-art FSC algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研66666完成签到 ,获得积分10
刚刚
1秒前
1秒前
1秒前
1秒前
2秒前
2秒前
2秒前
3秒前
3秒前
Aurora发布了新的文献求助10
3秒前
3秒前
Mere完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
5秒前
5秒前
李健应助111采纳,获得10
5秒前
6秒前
wjx发布了新的文献求助10
6秒前
6秒前
wjx发布了新的文献求助10
7秒前
linguobin发布了新的文献求助10
7秒前
清颜发布了新的文献求助10
7秒前
apple9515完成签到 ,获得积分10
8秒前
贺兰生羽发布了新的文献求助10
8秒前
wjx发布了新的文献求助10
8秒前
wjx发布了新的文献求助10
8秒前
wjx发布了新的文献求助10
8秒前
wjx发布了新的文献求助10
8秒前
wjx发布了新的文献求助20
8秒前
wjx发布了新的文献求助10
8秒前
wjx发布了新的文献求助10
8秒前
wjx发布了新的文献求助10
8秒前
hyw发布了新的文献求助10
9秒前
10秒前
lxr8900发布了新的文献求助10
10秒前
陆东完成签到,获得积分10
11秒前
11秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
錢鍾書楊絳親友書札 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3297381
求助须知:如何正确求助?哪些是违规求助? 2932792
关于积分的说明 8459595
捐赠科研通 2605614
什么是DOI,文献DOI怎么找? 1422455
科研通“疑难数据库(出版商)”最低求助积分说明 661383
邀请新用户注册赠送积分活动 644729