How Low Can You Go? Selecting Intensity Thresholds for Untargeted Metabolomics Data Preprocessing

代谢组学 主成分分析 预处理器 化学 模式识别(心理学) 数据集 分析物 集合(抽象数据类型) 数据质量 数据挖掘 生物系统 人工智能 计算机科学 色谱法 公制(单位) 运营管理 经济 生物 程序设计语言
作者
Joëlle Houriet,Warren S. Vidar,Preston K. Manwill,Daniel A. Todd,Nadja B. Cech
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:94 (51): 17964-17971 被引量:9
标识
DOI:10.1021/acs.analchem.2c04088
摘要

Untargeted mass spectrometry (MS) metabolomics is an increasingly popular approach for characterizing complex mixtures. Recent studies have highlighted the impact of data preprocessing for determining the quality of metabolomics data analysis. The first step in data processing with untargeted metabolomics requires that signal thresholds be selected for which features (detected ions) are included in the dataset. Analysts face the challenge of knowing where to set these thresholds; setting them too high could mean missing relevant features, but setting them too low could result in a complex and unwieldy dataset. This study compared data interpretation for an example metabolomics dataset when intensity thresholds were set at a range of feature heights. The main observations were that low signal thresholds (1) improved the limit of detection, (2) increased the number of features detected with an associated isotope pattern and/or an MS–MS fragmentation spectrum, and (3) increased the number of in-source clusters and fragments detected for known analytes of interest. When the settings of parameters differing in intensities were applied on a set of 39 samples to discriminate the samples through principal component analyses (PCA), similar results were obtained with both low- and high-intensity thresholds. We conclude that the most information-rich datasets can be obtained by setting low-intensity thresholds. However, in the cases where only a qualitative comparison of samples with PCA is to be performed, it may be sufficient to set high thresholds and thereby reduce the complexity of the data processing and amount of computational time required.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
多和5的武器完成签到,获得积分10
1秒前
3秒前
乔心发布了新的文献求助10
6秒前
zho发布了新的文献求助10
7秒前
如梦中完成签到,获得积分10
8秒前
hay完成签到,获得积分10
10秒前
小马甲应助乔心采纳,获得10
12秒前
监督導部完成签到,获得积分10
13秒前
上章完成签到,获得积分10
13秒前
xj0806完成签到 ,获得积分10
18秒前
19秒前
19秒前
21秒前
lucky发布了新的文献求助30
22秒前
24秒前
ww完成签到,获得积分10
24秒前
26秒前
神光发布了新的文献求助10
29秒前
SciGPT应助秋海棠采纳,获得10
29秒前
zho发布了新的文献求助10
30秒前
赘婿应助景笑天采纳,获得10
36秒前
NexusExplorer应助网再快点采纳,获得10
40秒前
41秒前
棉花糖完成签到,获得积分20
43秒前
chiyu完成签到,获得积分10
43秒前
cdercder应助资白玉采纳,获得10
44秒前
blawxx完成签到,获得积分10
45秒前
46秒前
Narcissus完成签到,获得积分10
47秒前
kinzer发布了新的文献求助10
47秒前
48秒前
Yuan发布了新的文献求助10
48秒前
紫电青霜完成签到,获得积分10
50秒前
科研通AI2S应助积极的睫毛采纳,获得10
51秒前
ceeray23应助yan采纳,获得10
51秒前
52秒前
shepherd发布了新的文献求助60
54秒前
小巧的傲松完成签到,获得积分10
54秒前
网再快点发布了新的文献求助10
56秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737385
求助须知:如何正确求助?哪些是违规求助? 3281209
关于积分的说明 10023728
捐赠科研通 2997939
什么是DOI,文献DOI怎么找? 1644880
邀请新用户注册赠送积分活动 782304
科研通“疑难数据库(出版商)”最低求助积分说明 749762