Improving robustness of industrial object detection by automatic generation of synthetic images from CAD models

计算机科学 过度拟合 人工智能 计算机辅助设计 稳健性(进化) 管道(软件) 机器学习 推论 自动化 最小边界框 模式识别(心理学) 数据挖掘 图像(数学) 工程制图 人工神经网络 机械工程 生物化学 化学 工程类 基因 程序设计语言
作者
Igor Garcia Ballhausen Sampaio,José Viterbo,Joris Guérin
出处
期刊:Computational Intelligence [Wiley]
卷期号:39 (3): 415-432
标识
DOI:10.1111/coin.12572
摘要

Abstract Object detection (OD) is used for visual quality control in factories. Images that compose training datasets are often collected directly from the production line and labeled with bounding boxes manually. Such data represent well the inference context but might lack diversity, implying a risk of overfitting. To address this issue, we propose a dataset construction method based on an automated pipeline, which receives a CAD model of an object and returns a set of realistic synthetic labeled images (code publicly available). Our approach can be easily used by non‐expert users and is relevant for industrial applications, where CAD models are widely available. We performed experiments to compare the use of datasets obtained by the two different ways—collecting and labeling real images or applying the proposed automated pipeline—in the classification of five different industrial parts. To ensure that both approaches can be used without deep learning expertise, all training parameters were kept fixed during these experiments. In our results, both methods were successful for some objects but failed for others. However, we have shown that the combined use of real and synthetic images led to better results. This finding has the potential to make industrial OD models more robust to poor data collection and labeling errors, without increasing the difficulty of the training process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
心灵美语兰完成签到 ,获得积分10
刚刚
seal发布了新的文献求助10
1秒前
李爱国应助宋静采纳,获得30
2秒前
djiwisksk66应助直率芸遥采纳,获得10
2秒前
瓦力完成签到 ,获得积分10
3秒前
elastin发布了新的文献求助10
3秒前
4秒前
5秒前
CHENG发布了新的文献求助10
5秒前
5秒前
5秒前
优雅的嚓茶完成签到 ,获得积分10
5秒前
认真平蝶完成签到,获得积分10
5秒前
5秒前
义气尔安完成签到,获得积分10
6秒前
GT完成签到,获得积分0
7秒前
嗨Honey完成签到 ,获得积分10
8秒前
8秒前
seal完成签到,获得积分10
8秒前
3262完成签到,获得积分10
8秒前
九号球完成签到,获得积分10
10秒前
elastin完成签到,获得积分10
10秒前
弓 长发布了新的文献求助10
10秒前
11秒前
yellow发布了新的文献求助10
11秒前
幽默翠桃完成签到,获得积分10
11秒前
13秒前
14秒前
Jasper应助清晨采纳,获得10
16秒前
幽默翠桃发布了新的文献求助10
17秒前
我是老大应助刘一鸣采纳,获得10
19秒前
可乐完成签到,获得积分10
20秒前
香蕉觅云应助唱跳双c采纳,获得30
20秒前
香蕉觅云应助张张采纳,获得30
20秒前
22秒前
熊猫小肿完成签到,获得积分10
22秒前
kai完成签到,获得积分10
24秒前
宋静发布了新的文献求助30
26秒前
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950968
求助须知:如何正确求助?哪些是违规求助? 3496346
关于积分的说明 11081568
捐赠科研通 3226849
什么是DOI,文献DOI怎么找? 1783983
邀请新用户注册赠送积分活动 868089
科研通“疑难数据库(出版商)”最低求助积分说明 800993