Improving robustness of industrial object detection by automatic generation of synthetic images from CAD models

计算机科学 过度拟合 人工智能 计算机辅助设计 稳健性(进化) 管道(软件) 机器学习 推论 自动化 最小边界框 模式识别(心理学) 数据挖掘 图像(数学) 工程制图 人工神经网络 基因 机械工程 工程类 生物化学 化学 程序设计语言
作者
Igor Garcia Ballhausen Sampaio,José Viterbo,Joris Guérin
出处
期刊:Computational Intelligence [Wiley]
卷期号:39 (3): 415-432
标识
DOI:10.1111/coin.12572
摘要

Abstract Object detection (OD) is used for visual quality control in factories. Images that compose training datasets are often collected directly from the production line and labeled with bounding boxes manually. Such data represent well the inference context but might lack diversity, implying a risk of overfitting. To address this issue, we propose a dataset construction method based on an automated pipeline, which receives a CAD model of an object and returns a set of realistic synthetic labeled images (code publicly available). Our approach can be easily used by non‐expert users and is relevant for industrial applications, where CAD models are widely available. We performed experiments to compare the use of datasets obtained by the two different ways—collecting and labeling real images or applying the proposed automated pipeline—in the classification of five different industrial parts. To ensure that both approaches can be used without deep learning expertise, all training parameters were kept fixed during these experiments. In our results, both methods were successful for some objects but failed for others. However, we have shown that the combined use of real and synthetic images led to better results. This finding has the potential to make industrial OD models more robust to poor data collection and labeling errors, without increasing the difficulty of the training process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梨花月给辛勤的紫雪的求助进行了留言
1秒前
SCI发发发完成签到,获得积分10
1秒前
1秒前
1秒前
闹心发布了新的文献求助10
1秒前
LIJIngcan发布了新的文献求助10
2秒前
Kate发布了新的文献求助10
2秒前
4秒前
4秒前
老北京发布了新的文献求助10
5秒前
JKA23发布了新的文献求助10
6秒前
7秒前
杨丽发布了新的文献求助10
7秒前
8秒前
泰山球迷发布了新的文献求助10
8秒前
9秒前
小w爱吃锅包肉应助口香糖采纳,获得10
9秒前
10秒前
10秒前
赖同学发布了新的文献求助20
11秒前
11秒前
Z_Miaom完成签到,获得积分10
12秒前
知北完成签到,获得积分10
13秒前
13秒前
Sir.夏季风发布了新的文献求助10
14秒前
佳雯发布了新的文献求助10
14秒前
千里完成签到,获得积分10
14秒前
14秒前
JKA23完成签到,获得积分10
15秒前
2026毕业啦发布了新的文献求助10
15秒前
16秒前
16秒前
郗妫完成签到,获得积分10
16秒前
星辰大海应助Z_Miaom采纳,获得10
17秒前
17秒前
端庄诗翠发布了新的文献求助30
19秒前
19秒前
科研通AI5应助周周采纳,获得20
20秒前
20秒前
斯文败类应助ximei采纳,获得10
21秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132616
求助须知:如何正确求助?哪些是违规求助? 4333988
关于积分的说明 13502721
捐赠科研通 4171020
什么是DOI,文献DOI怎么找? 2286820
邀请新用户注册赠送积分活动 1287691
关于科研通互助平台的介绍 1228590