Cuproptosis illustrates tumor micro-environment features and predicts prostate cancer therapeutic sensitivity and prognosis

前列腺癌 肿瘤科 转录组 比例危险模型 肿瘤微环境 癌症 内科学 医学 泌尿生殖系统 生物信息学 生物 基因 基因表达 生物化学
作者
Bisheng Cheng,Chen Tang,Junjia Xie,Qianghua Zhou,Tianlong Luo,Qiong Wang,Hai Huang
出处
期刊:Life Sciences [Elsevier]
卷期号:325: 121659-121659 被引量:21
标识
DOI:10.1016/j.lfs.2023.121659
摘要

Prostate cancer (PCA) is a common malignant genitourinary tumor that significantly impacts patient survival. Cuproptosis, a copper-dependent programmed cell death mechanism, plays a vital role in tumor development, therapy resistance, and immune microenvironment regulation in PCA. However, research on cuproptosis in prostate cancer is still in its early stages. Using the publicly available datasets TCGA and GEO, we first acquired the transcriptome and clinical information of PCA patients. The expression of cuprotosis-related genes (CRG) was identified and a prediction model was established based on LASSO-COX method. The predictive performance of this model was evaluated based on Kaplan-Meier method. Using GEO datasets, we further confirmed the critical genes level in the model. Tumor responses to immune checkpoint (ICP) inhibitors were predicted based on Tumor Immune Dysfunction and Exclusion (TIDE) score. The Genomics of Drug Sensitivity in Cancer (GDSC) was utilized to forecast drug sensitivity in cancer cells, whereas the GSVA was employed to analyze enriched pathways related to the cuproptosis signature. Subsequently, the function of PDHA1 gene in PCA was verified. A predictive risk model on basis of five cuproptosis-related genes (ATP7B, DBT, LIPT1, GCSH, PDHA1) were established. The progression free survival of low-risk group was obviously longer than the high-risk group, and exhibit better response to ICB therapy.Furthermore,PDHA1 is very important in the pathological process of PCA according to regressions analysis result, and the validation of external data sets were conducted. High PDHA1 expression patients with PCA not only had a shorter PFS and were less likely to benefit from ICB treatment, but they were also less responsive to multiple targeted therapeutic drugs. In preliminary research, PDHA1 knockdown significantly decreased the proliferation and invasion of PCA cells. This study established a novel cuproptosis-related gene-based prostate cancer prediction model that accurately predicts the prognosis of PCA patients. The model benefits individualized therapy and can assist clinicians in making clinical decisions for PCA patients. Furthermore, our data show that PDHA1 promotes PCA cell proliferation and invasion while modulating the susceptibility to immunotherapy and other targeted therapies. PDHA1 can be regarded as an important target for PCA therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bbb发布了新的文献求助10
1秒前
科研通AI2S应助an采纳,获得10
1秒前
1秒前
aslink完成签到,获得积分10
1秒前
1秒前
盒子应助科目三三次郎采纳,获得10
1秒前
林天完成签到,获得积分10
2秒前
SciGPT应助健康的延恶采纳,获得10
2秒前
111完成签到,获得积分10
2秒前
学术废物发布了新的文献求助10
3秒前
JamesPei应助pengyang采纳,获得10
3秒前
迷蝴蝶发布了新的文献求助30
4秒前
安琪发布了新的文献求助10
4秒前
烟花应助小巧曲奇采纳,获得10
4秒前
汉堡包应助刘艺娜采纳,获得10
4秒前
谦让的水瑶完成签到,获得积分10
4秒前
自然棒棒糖完成签到,获得积分10
6秒前
6秒前
Owen应助lishan采纳,获得10
7秒前
宇文书翠完成签到,获得积分10
7秒前
8秒前
bbb完成签到,获得积分10
8秒前
8秒前
研友_VZG7GZ应助白了个白采纳,获得10
9秒前
斯文败类应助Jasin采纳,获得10
10秒前
fuyuan完成签到,获得积分10
11秒前
Ava应助帅气绮露采纳,获得10
11秒前
pavonine完成签到,获得积分10
12秒前
菲菲公主发布了新的文献求助30
13秒前
13秒前
14秒前
Siso发布了新的文献求助10
15秒前
PSL发布了新的文献求助10
15秒前
15秒前
快乐科研完成签到 ,获得积分10
16秒前
18秒前
18秒前
金金金金完成签到,获得积分10
18秒前
沁沁完成签到,获得积分10
20秒前
ysyzxs完成签到,获得积分10
20秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135387
求助须知:如何正确求助?哪些是违规求助? 2786384
关于积分的说明 7777028
捐赠科研通 2442291
什么是DOI,文献DOI怎么找? 1298501
科研通“疑难数据库(出版商)”最低求助积分说明 625124
版权声明 600847