Experimental Demonstration of Peak Wavelength Measurement of Multiplexing Fiber Bragg Gratings Using Convolutional Neural Network

波长 光学 光纤布拉格光栅 波分复用 多路复用 卷积神经网络 材料科学 计算机科学 物理 电信 人工智能
作者
Tatsuya Yamaguchi,Hiroto Kawashima,Hiroki Matsuda,Yukitaka Shinoda
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (9): 9343-9352 被引量:3
标识
DOI:10.1109/jsen.2023.3262494
摘要

We propose a peak detection method for measuring fiber Bragg gratings (FBGs) using convolutional neural network (CNN) to improve the performances of wavelength division multiplexing. In wavelength division multiplexing, each FBG occupies a certain wavelength range; therefore, the number of FBGs that can be installed is limited by the wavelength band of the light source. To address this issue, methods for overlapping multiple FBGs of the same wavelength within a single occupied wavelength range have been studied. This contributes to improving the limit of multipoint FBGs manifold. However, this method results in the complex overlapping of multiple FBG reflectance spectra making it difficult to accurately measure the peak wavelengths of individual FBGs using conventional peak detection methods. Therefore, we developed a peak detection process using CNN, which is suitable for identifying unique feature data. Each FBG of the same wavelength was characterized to have a unique spectral shape by assigning a different full width at half maximum to each. We introduced noise-additive learning, a well-known method of data augmentation that increases tolerance to variations in the experimental signal. As a result, the standard deviation for peak wavelength detection significantly improved to 2.8 pm and the strain measurements with three complex overlapping FBGs were successfully demonstrated. The CNN model is the first to solve the problem of three overlapping FBGs for arbitrary wavelength changes. Furthermore, the developed peak detection process was found to be applicable to measurements that combined multiplexing of FBGs of either identical or different wavelengths.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
Akim应助caoyy采纳,获得10
2秒前
3秒前
科研通AI2S应助DreamMaker采纳,获得10
3秒前
6秒前
zho发布了新的文献求助30
6秒前
6秒前
ywang发布了新的文献求助10
6秒前
ZD小草完成签到 ,获得积分10
7秒前
健忘曼冬完成签到,获得积分10
8秒前
hkl1542发布了新的文献求助50
9秒前
10秒前
11秒前
KYN完成签到,获得积分10
12秒前
12秒前
桐桐应助叶未晞yi采纳,获得10
12秒前
12秒前
su发布了新的文献求助10
13秒前
123456789完成签到,获得积分10
15秒前
炙热的如柏完成签到,获得积分20
15秒前
16秒前
17秒前
HWei完成签到,获得积分10
17秒前
Ryan完成签到,获得积分10
17秒前
18秒前
Jzhang应助丙队长采纳,获得10
20秒前
21秒前
GXY发布了新的文献求助30
22秒前
Lucas应助专注秋尽采纳,获得10
22秒前
22秒前
754完成签到,获得积分10
22秒前
25秒前
学习猴发布了新的文献求助10
25秒前
充电宝应助炙热的如柏采纳,获得10
26秒前
所所应助qzaima采纳,获得10
26秒前
米兰达完成签到 ,获得积分0
27秒前
xg发布了新的文献求助10
29秒前
Loooong应助Ni采纳,获得10
30秒前
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824