Experimental Demonstration of Peak Wavelength Measurement of Multiplexing Fiber Bragg Gratings Using Convolutional Neural Network

波长 光学 光纤布拉格光栅 波分复用 多路复用 卷积神经网络 材料科学 计算机科学 物理 电信 人工智能
作者
Tatsuya Yamaguchi,Hiroto Kawashima,Hiroki Matsuda,Yukitaka Shinoda
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (9): 9343-9352 被引量:3
标识
DOI:10.1109/jsen.2023.3262494
摘要

We propose a peak detection method for measuring fiber Bragg gratings (FBGs) using convolutional neural network (CNN) to improve the performances of wavelength division multiplexing. In wavelength division multiplexing, each FBG occupies a certain wavelength range; therefore, the number of FBGs that can be installed is limited by the wavelength band of the light source. To address this issue, methods for overlapping multiple FBGs of the same wavelength within a single occupied wavelength range have been studied. This contributes to improving the limit of multipoint FBGs manifold. However, this method results in the complex overlapping of multiple FBG reflectance spectra making it difficult to accurately measure the peak wavelengths of individual FBGs using conventional peak detection methods. Therefore, we developed a peak detection process using CNN, which is suitable for identifying unique feature data. Each FBG of the same wavelength was characterized to have a unique spectral shape by assigning a different full width at half maximum to each. We introduced noise-additive learning, a well-known method of data augmentation that increases tolerance to variations in the experimental signal. As a result, the standard deviation for peak wavelength detection significantly improved to 2.8 pm and the strain measurements with three complex overlapping FBGs were successfully demonstrated. The CNN model is the first to solve the problem of three overlapping FBGs for arbitrary wavelength changes. Furthermore, the developed peak detection process was found to be applicable to measurements that combined multiplexing of FBGs of either identical or different wavelengths.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
顺利毕业发布了新的文献求助10
刚刚
BrandNew。发布了新的文献求助10
刚刚
2秒前
牛牛完成签到,获得积分10
2秒前
JMrider发布了新的文献求助10
2秒前
快乐真完成签到,获得积分10
2秒前
3秒前
D调的华丽完成签到,获得积分10
3秒前
XX发布了新的文献求助10
3秒前
成就凡双应助STP顶峰相见采纳,获得20
3秒前
4秒前
Cassiopiea19发布了新的文献求助10
4秒前
儒雅非笑发布了新的文献求助10
4秒前
4秒前
三寸光阴完成签到,获得积分10
5秒前
6秒前
知然完成签到,获得积分20
6秒前
somajason完成签到,获得积分10
6秒前
任性的岱周完成签到,获得积分10
6秒前
6秒前
sun完成签到,获得积分10
7秒前
H丶化羽发布了新的文献求助10
7秒前
月是故乡明完成签到,获得积分10
7秒前
小毛豆发布了新的文献求助50
7秒前
量子星尘发布了新的文献求助10
7秒前
cc完成签到,获得积分10
8秒前
BaiX发布了新的文献求助10
8秒前
淡然钢铁侠完成签到,获得积分10
8秒前
Yamila完成签到,获得积分10
8秒前
少年应助MNing采纳,获得10
8秒前
隐形曼青应助mei采纳,获得10
8秒前
六便士发布了新的文献求助10
9秒前
dspan发布了新的文献求助10
9秒前
王欣完成签到 ,获得积分10
9秒前
hdd完成签到,获得积分10
9秒前
谷中青完成签到,获得积分10
9秒前
传奇3应助顺利毕业采纳,获得10
9秒前
10秒前
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5698917
求助须知:如何正确求助?哪些是违规求助? 5127463
关于积分的说明 15223160
捐赠科研通 4853889
什么是DOI,文献DOI怎么找? 2604380
邀请新用户注册赠送积分活动 1555868
关于科研通互助平台的介绍 1514197