Experimental Demonstration of Peak Wavelength Measurement of Multiplexing Fiber Bragg Gratings Using Convolutional Neural Network

波长 光学 光纤布拉格光栅 波分复用 多路复用 卷积神经网络 材料科学 计算机科学 物理 电信 人工智能
作者
Tatsuya Yamaguchi,Hiroto Kawashima,Hiroki Matsuda,Yukitaka Shinoda
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:23 (9): 9343-9352 被引量:3
标识
DOI:10.1109/jsen.2023.3262494
摘要

We propose a peak detection method for measuring fiber Bragg gratings (FBGs) using convolutional neural network (CNN) to improve the performances of wavelength division multiplexing. In wavelength division multiplexing, each FBG occupies a certain wavelength range; therefore, the number of FBGs that can be installed is limited by the wavelength band of the light source. To address this issue, methods for overlapping multiple FBGs of the same wavelength within a single occupied wavelength range have been studied. This contributes to improving the limit of multipoint FBGs manifold. However, this method results in the complex overlapping of multiple FBG reflectance spectra making it difficult to accurately measure the peak wavelengths of individual FBGs using conventional peak detection methods. Therefore, we developed a peak detection process using CNN, which is suitable for identifying unique feature data. Each FBG of the same wavelength was characterized to have a unique spectral shape by assigning a different full width at half maximum to each. We introduced noise-additive learning, a well-known method of data augmentation that increases tolerance to variations in the experimental signal. As a result, the standard deviation for peak wavelength detection significantly improved to 2.8 pm and the strain measurements with three complex overlapping FBGs were successfully demonstrated. The CNN model is the first to solve the problem of three overlapping FBGs for arbitrary wavelength changes. Furthermore, the developed peak detection process was found to be applicable to measurements that combined multiplexing of FBGs of either identical or different wavelengths.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花生四烯酸完成签到 ,获得积分10
1秒前
科科通通完成签到,获得积分10
1秒前
WYK完成签到 ,获得积分10
4秒前
4秒前
学海行舟完成签到 ,获得积分10
8秒前
黑眼圈完成签到 ,获得积分10
11秒前
幸福的羿完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
霍明轩完成签到 ,获得积分10
22秒前
游艺完成签到 ,获得积分10
25秒前
量子星尘发布了新的文献求助10
26秒前
是盐的学术号吖完成签到 ,获得积分10
27秒前
空2完成签到 ,获得积分0
32秒前
烂漫的从彤完成签到,获得积分10
32秒前
Wang完成签到 ,获得积分20
32秒前
小心翼翼完成签到 ,获得积分10
33秒前
Manzia完成签到,获得积分10
38秒前
小丸子和zz完成签到 ,获得积分10
42秒前
43秒前
在水一方应助灵巧的傲柏采纳,获得10
44秒前
Dr.Tang完成签到 ,获得积分10
47秒前
swordshine完成签到,获得积分10
47秒前
量子星尘发布了新的文献求助10
48秒前
52秒前
57秒前
herpes完成签到 ,获得积分0
58秒前
Heart_of_Stone完成签到 ,获得积分10
59秒前
59秒前
FCL完成签到,获得积分10
59秒前
鲸鱼打滚完成签到 ,获得积分10
1分钟前
Wang发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助20
1分钟前
1分钟前
ceploup完成签到,获得积分10
1分钟前
YJH完成签到,获得积分10
1分钟前
1分钟前
你好完成签到 ,获得积分0
1分钟前
waswas完成签到,获得积分10
1分钟前
温暖完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4613016
求助须知:如何正确求助?哪些是违规求助? 4018011
关于积分的说明 12436990
捐赠科研通 3700338
什么是DOI,文献DOI怎么找? 2040716
邀请新用户注册赠送积分活动 1073470
科研通“疑难数据库(出版商)”最低求助积分说明 957104