Experimental Demonstration of Peak Wavelength Measurement of Multiplexing Fiber Bragg Gratings Using Convolutional Neural Network

波长 光学 光纤布拉格光栅 波分复用 多路复用 卷积神经网络 材料科学 计算机科学 物理 电信 人工智能
作者
Tatsuya Yamaguchi,Hiroto Kawashima,Hiroki Matsuda,Yukitaka Shinoda
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (9): 9343-9352 被引量:3
标识
DOI:10.1109/jsen.2023.3262494
摘要

We propose a peak detection method for measuring fiber Bragg gratings (FBGs) using convolutional neural network (CNN) to improve the performances of wavelength division multiplexing. In wavelength division multiplexing, each FBG occupies a certain wavelength range; therefore, the number of FBGs that can be installed is limited by the wavelength band of the light source. To address this issue, methods for overlapping multiple FBGs of the same wavelength within a single occupied wavelength range have been studied. This contributes to improving the limit of multipoint FBGs manifold. However, this method results in the complex overlapping of multiple FBG reflectance spectra making it difficult to accurately measure the peak wavelengths of individual FBGs using conventional peak detection methods. Therefore, we developed a peak detection process using CNN, which is suitable for identifying unique feature data. Each FBG of the same wavelength was characterized to have a unique spectral shape by assigning a different full width at half maximum to each. We introduced noise-additive learning, a well-known method of data augmentation that increases tolerance to variations in the experimental signal. As a result, the standard deviation for peak wavelength detection significantly improved to 2.8 pm and the strain measurements with three complex overlapping FBGs were successfully demonstrated. The CNN model is the first to solve the problem of three overlapping FBGs for arbitrary wavelength changes. Furthermore, the developed peak detection process was found to be applicable to measurements that combined multiplexing of FBGs of either identical or different wavelengths.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狸花小喵完成签到,获得积分10
刚刚
Stella应助Shirley采纳,获得10
1秒前
李同学完成签到,获得积分10
1秒前
朱先生完成签到 ,获得积分10
1秒前
小蘑菇应助Netsky采纳,获得10
1秒前
yihua发布了新的文献求助10
1秒前
阿猫完成签到,获得积分20
1秒前
ZYY完成签到,获得积分10
2秒前
qwdqwd发布了新的文献求助10
2秒前
guoguo发布了新的文献求助10
2秒前
LL完成签到,获得积分10
3秒前
寻绿发布了新的文献求助10
3秒前
WWW完成签到,获得积分10
3秒前
忐忑的天真完成签到 ,获得积分10
3秒前
123xmc发布了新的文献求助10
3秒前
怡然思萱发布了新的文献求助20
3秒前
baimo完成签到,获得积分10
3秒前
诩阽完成签到,获得积分10
4秒前
Spring完成签到,获得积分10
4秒前
胡茶茶完成签到 ,获得积分10
4秒前
文静的柚子完成签到,获得积分10
4秒前
情怀应助12采纳,获得10
5秒前
丰富的雪糕完成签到,获得积分10
5秒前
SciGPT应助zy采纳,获得10
5秒前
量子星尘发布了新的文献求助20
5秒前
英俊的铭应助Du采纳,获得10
5秒前
loogn7发布了新的文献求助10
6秒前
小马甲应助杨衡采纳,获得10
7秒前
桐桐应助普鲁卡因采纳,获得10
7秒前
7秒前
wuhoo完成签到,获得积分10
7秒前
yihua完成签到,获得积分20
7秒前
万能图书馆应助fool采纳,获得10
7秒前
追风少年发布了新的文献求助10
7秒前
orixero应助张正采纳,获得10
8秒前
Mid完成签到 ,获得积分10
8秒前
你好棒呀完成签到,获得积分10
8秒前
hume完成签到,获得积分10
9秒前
禾研完成签到,获得积分10
9秒前
wenlongliu完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017