Experimental Demonstration of Peak Wavelength Measurement of Multiplexing Fiber Bragg Gratings Using Convolutional Neural Network

波长 光学 光纤布拉格光栅 波分复用 多路复用 卷积神经网络 材料科学 计算机科学 物理 电信 人工智能
作者
Tatsuya Yamaguchi,Hiroto Kawashima,Hiroki Matsuda,Yukitaka Shinoda
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (9): 9343-9352 被引量:3
标识
DOI:10.1109/jsen.2023.3262494
摘要

We propose a peak detection method for measuring fiber Bragg gratings (FBGs) using convolutional neural network (CNN) to improve the performances of wavelength division multiplexing. In wavelength division multiplexing, each FBG occupies a certain wavelength range; therefore, the number of FBGs that can be installed is limited by the wavelength band of the light source. To address this issue, methods for overlapping multiple FBGs of the same wavelength within a single occupied wavelength range have been studied. This contributes to improving the limit of multipoint FBGs manifold. However, this method results in the complex overlapping of multiple FBG reflectance spectra making it difficult to accurately measure the peak wavelengths of individual FBGs using conventional peak detection methods. Therefore, we developed a peak detection process using CNN, which is suitable for identifying unique feature data. Each FBG of the same wavelength was characterized to have a unique spectral shape by assigning a different full width at half maximum to each. We introduced noise-additive learning, a well-known method of data augmentation that increases tolerance to variations in the experimental signal. As a result, the standard deviation for peak wavelength detection significantly improved to 2.8 pm and the strain measurements with three complex overlapping FBGs were successfully demonstrated. The CNN model is the first to solve the problem of three overlapping FBGs for arbitrary wavelength changes. Furthermore, the developed peak detection process was found to be applicable to measurements that combined multiplexing of FBGs of either identical or different wavelengths.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
15940220607关注了科研通微信公众号
1秒前
可爱发布了新的文献求助10
4秒前
感谢大佬发布了新的文献求助10
6秒前
8秒前
9秒前
9秒前
毛毛发布了新的文献求助10
9秒前
yuchao_0110完成签到,获得积分10
10秒前
不吃豆皮完成签到,获得积分10
10秒前
11秒前
yoonkk完成签到,获得积分10
11秒前
从容冰夏关注了科研通微信公众号
12秒前
达米安发布了新的文献求助20
12秒前
bio完成签到,获得积分10
12秒前
Makta发布了新的文献求助10
13秒前
14秒前
ln177发布了新的文献求助10
15秒前
QYW发布了新的文献求助10
15秒前
研友_VZG7GZ应助Serein采纳,获得10
16秒前
科研通AI2S应助hexiang采纳,获得30
16秒前
谦让的紫蓝完成签到,获得积分10
16秒前
FashionBoy应助烂漫的猕猴桃采纳,获得30
16秒前
隐形曼青应助可爱采纳,获得10
17秒前
17秒前
bio发布了新的文献求助10
17秒前
18秒前
19秒前
萌仔防守发布了新的文献求助10
20秒前
感谢大佬完成签到,获得积分10
20秒前
XXXX发布了新的文献求助10
21秒前
Makta完成签到,获得积分10
21秒前
21秒前
22秒前
orixero应助ln177采纳,获得10
22秒前
22秒前
23秒前
史小霜发布了新的文献求助10
23秒前
蓝天0812发布了新的文献求助10
23秒前
思源应助虚幻德地采纳,获得10
24秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149493
求助须知:如何正确求助?哪些是违规求助? 2800565
关于积分的说明 7840531
捐赠科研通 2458065
什么是DOI,文献DOI怎么找? 1308242
科研通“疑难数据库(出版商)”最低求助积分说明 628460
版权声明 601706