亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An application of raman spectroscopy in combination with machine learning to determine gastric cancer spectroscopy marker

拉曼光谱 癌症 胃癌 胃切除术 内科学 医学 胃肠病学 病理 物理 光学
作者
Zozan Güleken,Paweł Jakubczyk,Wiesław Paja,Krzysztof Pancerz,Agnieszka Wosiak,İlhan Yaylım,Güldal İnal Gültekin,Nevzat Tarhan,Mehmet Tolgahan Hakan,Dilara Sönmez,Devrim Sarıbal,Soykan Arîkan,Joanna Depciuch
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:234: 107523-107523 被引量:34
标识
DOI:10.1016/j.cmpb.2023.107523
摘要

Globally, gastric carcinoma (Gca) ranks fifth in terms of incidence and third in terms of mortality. Higher serum tumor markers (TMs) than those from healthy individuals, led to TMs clinical application as diagnostic biomarkers for Gca. Actually, there is no accurate blood test to diagnose Gca.Raman spectroscopy is applied as an efficient, credible, minimally invasive technique to evaluate the serum TMs levels in blood samples. After curative gastrectomy, serum TMs levels are important in predicting the recurrence of gastric cancer, which must be detected early. The experimentally assesed TMs levels using Raman measurements and ELİSA test were used to develop a prediction model based on machine learning techniques. A total of 70 participants diagnosed with gastric cancer after surgery (n = 26) and healthy (n = 44) were comrpised in this study.In the Raman spectra of gastric cancer patients, an additional peak at 1182 cm-1 was observed and, the Raman intensity of amide III, II, I, and CH2 proteins as well as lipids functional group was higher. Furthermore, Principal Component Analysis (PCA) showed, that it is possible to distinguish between the control and Gca groups using the Raman range between 800 and 1800 cm-1, as well as between 2700 and 3000 cm-1. The analysis of Raman spectra dynamics in gastric cancer and healthy patients showed, that the vibrations at 1302 and 1306 cm-1 were characteristic for cancer patients. In addition, the selected machine learning methods showed classification accuracy of more than 95%, while obtaining an AUROC of 0.98. Such results were obtained using Deep Neural Networks and the XGBoost algorithm.The obtained results suggest, that Raman shifts at 1302 and 1306 cm-1 could be spectroscopic markers of gastric cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
嘎嘎嘎完成签到,获得积分10
7秒前
9秒前
归海浩阑完成签到,获得积分10
10秒前
17秒前
CodeCraft应助夏夏夏夏夏夏采纳,获得10
18秒前
24秒前
GU由于求助违规,被管理员扣积分10
41秒前
hanawang应助轻松板栗采纳,获得30
42秒前
yangyang给yangyang的求助进行了留言
51秒前
null给GU的求助进行了留言
53秒前
59秒前
1分钟前
Akim应助科研通管家采纳,获得10
1分钟前
qpp发布了新的文献求助10
1分钟前
深渊与海完成签到,获得积分10
1分钟前
鱼鱼完成签到 ,获得积分10
1分钟前
hanawang应助banxia0001采纳,获得20
1分钟前
kuku上岸完成签到,获得积分10
1分钟前
hanawang应助轻松板栗采纳,获得10
1分钟前
一颗溏心蛋完成签到 ,获得积分10
1分钟前
zqq完成签到,获得积分0
2分钟前
2分钟前
2分钟前
胡静发布了新的文献求助10
2分钟前
YYL完成签到 ,获得积分10
2分钟前
2分钟前
大模型应助微笑的鼠标采纳,获得10
2分钟前
科研通AI2S应助胡静采纳,获得10
2分钟前
2分钟前
czq完成签到 ,获得积分10
2分钟前
耍酷蘑菇完成签到,获得积分10
2分钟前
2分钟前
andrele发布了新的文献求助10
2分钟前
浮游应助null采纳,获得10
2分钟前
科研通AI5应助倪妮采纳,获得10
2分钟前
归尘应助科研通管家采纳,获得30
3分钟前
归尘应助科研通管家采纳,获得30
3分钟前
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5116192
求助须知:如何正确求助?哪些是违规求助? 4322907
关于积分的说明 13469685
捐赠科研通 4155108
什么是DOI,文献DOI怎么找? 2276985
邀请新用户注册赠送积分活动 1278855
关于科研通互助平台的介绍 1216881