An application of raman spectroscopy in combination with machine learning to determine gastric cancer spectroscopy marker

拉曼光谱 癌症 胃癌 胃切除术 内科学 医学 胃肠病学 病理 物理 光学
作者
Zozan Güleken,Paweł Jakubczyk,Wiesław Paja,Krzysztof Pancerz,Agnieszka Wosiak,İlhan Yaylım,Güldal İnal Gültekin,Nevzat Tarhan,Mehmet Tolgahan Hakan,Dilara Sönmez,Devrim Sarıbal,Soykan Arîkan,Joanna Depciuch
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:234: 107523-107523 被引量:34
标识
DOI:10.1016/j.cmpb.2023.107523
摘要

Globally, gastric carcinoma (Gca) ranks fifth in terms of incidence and third in terms of mortality. Higher serum tumor markers (TMs) than those from healthy individuals, led to TMs clinical application as diagnostic biomarkers for Gca. Actually, there is no accurate blood test to diagnose Gca.Raman spectroscopy is applied as an efficient, credible, minimally invasive technique to evaluate the serum TMs levels in blood samples. After curative gastrectomy, serum TMs levels are important in predicting the recurrence of gastric cancer, which must be detected early. The experimentally assesed TMs levels using Raman measurements and ELİSA test were used to develop a prediction model based on machine learning techniques. A total of 70 participants diagnosed with gastric cancer after surgery (n = 26) and healthy (n = 44) were comrpised in this study.In the Raman spectra of gastric cancer patients, an additional peak at 1182 cm-1 was observed and, the Raman intensity of amide III, II, I, and CH2 proteins as well as lipids functional group was higher. Furthermore, Principal Component Analysis (PCA) showed, that it is possible to distinguish between the control and Gca groups using the Raman range between 800 and 1800 cm-1, as well as between 2700 and 3000 cm-1. The analysis of Raman spectra dynamics in gastric cancer and healthy patients showed, that the vibrations at 1302 and 1306 cm-1 were characteristic for cancer patients. In addition, the selected machine learning methods showed classification accuracy of more than 95%, while obtaining an AUROC of 0.98. Such results were obtained using Deep Neural Networks and the XGBoost algorithm.The obtained results suggest, that Raman shifts at 1302 and 1306 cm-1 could be spectroscopic markers of gastric cancer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郭露露完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
1秒前
2秒前
孟祥飞完成签到,获得积分10
2秒前
LLL完成签到,获得积分10
2秒前
2秒前
2秒前
活泼山雁发布了新的文献求助10
3秒前
mp5完成签到,获得积分10
3秒前
月中天梧桐栖完成签到,获得积分10
3秒前
zsj完成签到 ,获得积分10
3秒前
yqsf789发布了新的文献求助10
4秒前
温暖的白猫完成签到,获得积分10
4秒前
咕咕完成签到 ,获得积分10
4秒前
NexusExplorer应助专注钢笔采纳,获得10
4秒前
YuZhang完成签到 ,获得积分10
4秒前
舒心妙旋发布了新的文献求助10
4秒前
kk完成签到 ,获得积分10
5秒前
5秒前
5秒前
传奇3应助沉默南露采纳,获得10
5秒前
四季安完成签到 ,获得积分10
6秒前
震动的听安完成签到,获得积分10
6秒前
6秒前
顾勇完成签到,获得积分0
7秒前
李燕伟完成签到 ,获得积分10
7秒前
好好发布了新的文献求助10
8秒前
snowpie完成签到 ,获得积分10
8秒前
9秒前
活泼山雁完成签到,获得积分10
9秒前
rain完成签到,获得积分10
9秒前
9秒前
大方的笑萍完成签到 ,获得积分10
9秒前
9秒前
伶俐如冰完成签到,获得积分10
10秒前
Hello应助Netsky采纳,获得10
10秒前
不甜完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017