已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An application of raman spectroscopy in combination with machine learning to determine gastric cancer spectroscopy marker

拉曼光谱 癌症 胃癌 胃切除术 内科学 医学 胃肠病学 病理 物理 光学
作者
Zozan Güleken,Paweł Jakubczyk,Wiesław Paja,Krzysztof Pancerz,Agnieszka Wosiak,İlhan Yaylım,Güldal İnal Gültekin,Nevzat Tarhan,Mehmet Tolgahan Hakan,Dilara Sönmez,Devrim Sarıbal,Soykan Arıkan,Joanna Depciuch
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:234: 107523-107523 被引量:31
标识
DOI:10.1016/j.cmpb.2023.107523
摘要

Globally, gastric carcinoma (Gca) ranks fifth in terms of incidence and third in terms of mortality. Higher serum tumor markers (TMs) than those from healthy individuals, led to TMs clinical application as diagnostic biomarkers for Gca. Actually, there is no accurate blood test to diagnose Gca.Raman spectroscopy is applied as an efficient, credible, minimally invasive technique to evaluate the serum TMs levels in blood samples. After curative gastrectomy, serum TMs levels are important in predicting the recurrence of gastric cancer, which must be detected early. The experimentally assesed TMs levels using Raman measurements and ELİSA test were used to develop a prediction model based on machine learning techniques. A total of 70 participants diagnosed with gastric cancer after surgery (n = 26) and healthy (n = 44) were comrpised in this study.In the Raman spectra of gastric cancer patients, an additional peak at 1182 cm-1 was observed and, the Raman intensity of amide III, II, I, and CH2 proteins as well as lipids functional group was higher. Furthermore, Principal Component Analysis (PCA) showed, that it is possible to distinguish between the control and Gca groups using the Raman range between 800 and 1800 cm-1, as well as between 2700 and 3000 cm-1. The analysis of Raman spectra dynamics in gastric cancer and healthy patients showed, that the vibrations at 1302 and 1306 cm-1 were characteristic for cancer patients. In addition, the selected machine learning methods showed classification accuracy of more than 95%, while obtaining an AUROC of 0.98. Such results were obtained using Deep Neural Networks and the XGBoost algorithm.The obtained results suggest, that Raman shifts at 1302 and 1306 cm-1 could be spectroscopic markers of gastric cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿飞发布了新的文献求助10
1秒前
4秒前
4秒前
李爱国应助仲谋伯符采纳,获得30
4秒前
5秒前
开心雁荷关注了科研通微信公众号
7秒前
7秒前
8秒前
沉默妙彤完成签到,获得积分20
8秒前
大模型应助nick采纳,获得10
9秒前
9秒前
11秒前
11秒前
keke完成签到,获得积分20
11秒前
11秒前
淡然智宸完成签到,获得积分10
12秒前
zhidong完成签到 ,获得积分10
14秒前
ding应助让孩子顺利毕业吧采纳,获得10
14秒前
细心蚂蚁发布了新的文献求助10
14秒前
玉林发布了新的文献求助10
14秒前
科研通AI5应助zzzzz采纳,获得10
15秒前
Rachel发布了新的文献求助10
15秒前
小阿完成签到,获得积分20
15秒前
15秒前
轻松焱发布了新的文献求助10
15秒前
eric发布了新的文献求助10
18秒前
18秒前
虚幻如霜发布了新的文献求助10
20秒前
woshiwuziq应助细心蚂蚁采纳,获得20
23秒前
夏夜发布了新的文献求助10
25秒前
科研通AI5应助sybil采纳,获得10
26秒前
26秒前
cc完成签到,获得积分10
27秒前
28秒前
29秒前
ah完成签到,获得积分10
29秒前
30秒前
无花果应助土豆大魔王采纳,获得10
30秒前
阿飞完成签到,获得积分10
31秒前
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3516074
求助须知:如何正确求助?哪些是违规求助? 3098347
关于积分的说明 9239077
捐赠科研通 2793297
什么是DOI,文献DOI怎么找? 1532982
邀请新用户注册赠送积分活动 712472
科研通“疑难数据库(出版商)”最低求助积分说明 707322