Dual Contrastive Learning Network for Graph Clustering

判别式 计算机科学 邻接矩阵 特征学习 人工智能 图形 聚类分析 理论计算机科学 机器学习 模式识别(心理学)
作者
Xin Peng,Jieren Cheng,Xiangyan Tang,Jingxin Liu,Jiahua Wu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:5
标识
DOI:10.1109/tnnls.2023.3244397
摘要

Graph representation is an important part of graph clustering. Recently, contrastive learning, which maximizes the mutual information between augmented graph views that share the same semantics, has become a popular and powerful paradigm for graph representation. However, in the process of patch contrasting, existing literature tends to learn all features into similar variables, i.e., representation collapse, leading to less discriminative graph representations. To tackle this problem, we propose a novel self-supervised learning method called dual contrastive learning network (DCLN), which aims to reduce the redundant information of learned latent variables in a dual manner. Specifically, the dual curriculum contrastive module (DCCM) is proposed, which approximates the node similarity matrix and feature similarity matrix to a high-order adjacency matrix and an identity matrix, respectively. By doing this, the informative information in high-order neighbors could be well collected and preserved while the irrelevant redundant features among representations could be eliminated, hence improving the discriminative capacity of the graph representation. Moreover, to alleviate the problem of sample imbalance during the contrastive process, we design a curriculum learning strategy, which enables the network to simultaneously learn reliable information from two levels. Extensive experiments on six benchmark datasets have demonstrated the effectiveness and superiority of the proposed algorithm compared with state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七七发布了新的文献求助10
刚刚
tu完成签到,获得积分20
刚刚
江任意西完成签到 ,获得积分10
1秒前
1秒前
陈椅子的求学完成签到,获得积分10
1秒前
赘婿应助mcsmdxs采纳,获得10
1秒前
鉴定为寄完成签到,获得积分20
1秒前
FLY完成签到,获得积分10
2秒前
岁月轮回发布了新的文献求助10
2秒前
sakiecon完成签到,获得积分10
2秒前
omo完成签到,获得积分10
2秒前
调研昵称发布了新的文献求助10
3秒前
3秒前
华仔应助留胡子的青柏采纳,获得10
3秒前
3秒前
建丰完成签到,获得积分10
4秒前
4秒前
乐乐应助宗笑晴采纳,获得10
4秒前
拼搏太英完成签到,获得积分10
4秒前
5秒前
susu发布了新的文献求助200
5秒前
7秒前
loveyouxkkt应助韦老虎采纳,获得30
7秒前
小蘑菇应助含糊采纳,获得10
8秒前
深情安青应助狂野觅云采纳,获得10
8秒前
鉴定为寄发布了新的文献求助30
9秒前
夜白举报无奈的浩宇求助涉嫌违规
9秒前
9秒前
10秒前
跳跃尔容发布了新的文献求助10
10秒前
青山发布了新的文献求助26
10秒前
10秒前
Agernon应助韦老虎采纳,获得10
11秒前
沉默沛岚发布了新的文献求助30
11秒前
11秒前
程程发布了新的文献求助10
11秒前
晨安发布了新的文献求助10
12秒前
12秒前
橙子完成签到,获得积分10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762