Dual Contrastive Learning Network for Graph Clustering

判别式 计算机科学 邻接矩阵 特征学习 人工智能 图形 聚类分析 理论计算机科学 机器学习 模式识别(心理学)
作者
Xin Peng,Jieren Cheng,Xiangyan Tang,Jing‐Xin Liu,Jiahua Wu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:2
标识
DOI:10.1109/tnnls.2023.3244397
摘要

Graph representation is an important part of graph clustering. Recently, contrastive learning, which maximizes the mutual information between augmented graph views that share the same semantics, has become a popular and powerful paradigm for graph representation. However, in the process of patch contrasting, existing literature tends to learn all features into similar variables, i.e., representation collapse, leading to less discriminative graph representations. To tackle this problem, we propose a novel self-supervised learning method called dual contrastive learning network (DCLN), which aims to reduce the redundant information of learned latent variables in a dual manner. Specifically, the dual curriculum contrastive module (DCCM) is proposed, which approximates the node similarity matrix and feature similarity matrix to a high-order adjacency matrix and an identity matrix, respectively. By doing this, the informative information in high-order neighbors could be well collected and preserved while the irrelevant redundant features among representations could be eliminated, hence improving the discriminative capacity of the graph representation. Moreover, to alleviate the problem of sample imbalance during the contrastive process, we design a curriculum learning strategy, which enables the network to simultaneously learn reliable information from two levels. Extensive experiments on six benchmark datasets have demonstrated the effectiveness and superiority of the proposed algorithm compared with state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Raylihuang完成签到,获得积分10
1秒前
qiann发布了新的文献求助10
1秒前
2秒前
研友_ZzMMRn完成签到,获得积分10
2秒前
2秒前
3秒前
万能图书馆应助宣依云采纳,获得10
3秒前
3秒前
4秒前
我是人机完成签到,获得积分10
4秒前
4秒前
5秒前
zho发布了新的文献求助10
6秒前
6秒前
王唯任完成签到,获得积分10
6秒前
7秒前
qiann完成签到,获得积分10
8秒前
9秒前
grisco发布了新的文献求助10
9秒前
专注臻完成签到,获得积分10
12秒前
852应助他方世界采纳,获得10
14秒前
洋山芋完成签到,获得积分10
16秒前
忧虑的绮梅完成签到,获得积分10
17秒前
17秒前
情怀应助戴小夫采纳,获得30
17秒前
大模型应助grisco采纳,获得10
19秒前
景代丝完成签到,获得积分10
20秒前
不吃豆皮发布了新的文献求助10
21秒前
23秒前
脑洞疼应助凌寻冬采纳,获得10
24秒前
25秒前
formscratch完成签到,获得积分10
26秒前
暴富完成签到,获得积分10
27秒前
27秒前
等待毛豆完成签到,获得积分10
27秒前
28秒前
lucyu2668发布了新的文献求助10
29秒前
888发布了新的文献求助10
30秒前
30秒前
30秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149540
求助须知:如何正确求助?哪些是违规求助? 2800615
关于积分的说明 7840805
捐赠科研通 2458144
什么是DOI,文献DOI怎么找? 1308295
科研通“疑难数据库(出版商)”最低求助积分说明 628471
版权声明 601706