A deep-learning-based mineral prospectivity modeling framework and workflow in prediction of porphyry–epithermal mineralization in the Duolong ore District, Tibet

远景图 探矿 矿化(土壤科学) 矿产勘查 高光谱成像 工作流程 地质学 支持向量机 地球化学 人工神经网络 采矿工程 人工智能 遥感 计算机科学 数据库 土壤科学 地貌学 构造盆地 土壤水分
作者
Cai Liu,Wenlei Wang,Juxing Tang,Qin Wang,Ke Zheng,Yanyun Sun,Jiahong Zhang,Fuping Gan,Baobao Cao
出处
期刊:Ore Geology Reviews [Elsevier BV]
卷期号:157: 105419-105419 被引量:7
标识
DOI:10.1016/j.oregeorev.2023.105419
摘要

Machine learning (ML) is emerging as a highly effective technique for mineral exploration. However, mineral exploration poses several unique challenges to ML application, such as uncertain geological information in remote regions and imbalanced labeled training data. In this study, we developed a deep-learning framework — a self-attention back-propagation neural network (SA-BPNN) — which is used to automatically explore relationships among diverse features and improve the capability of information extraction. Moreover, we proposed a mineral prospectivity modeling workflow involving “quantitative data + ML + expert experience” for porphyry-epithermal deposits. Using quantitative data obtained from hyperspectral remote sensing, geochemistry, and geophysics, we predicted ore-prospecting targets by applying the SVM, SA-BPNN, and U-Net models. Thereafter, we combined the model-based prediction with geological data to delineate the target areas. The model-based prediction by SVM, SA-BPNN, and U-Net occupy 1.73%, 1.40%, and 2.21% of the study area and contain 100%, 100%, and 80% of the known Cu-Au mineralization in the Duolong ore district in Tibet, respectively. The proposed SA-BPNN method, thus, achieved superior performance for mineral prospectivity modeling compared with alternative methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
UMA完成签到,获得积分10
1秒前
yjfff完成签到,获得积分10
1秒前
修士完成签到 ,获得积分10
1秒前
wanci应助asparagine采纳,获得10
1秒前
英俊的铭应助斯文问旋采纳,获得10
2秒前
包容若风完成签到 ,获得积分10
2秒前
Ari_Kun完成签到 ,获得积分10
2秒前
有一颗卤蛋完成签到,获得积分10
3秒前
WEIWEI完成签到,获得积分10
3秒前
3秒前
vikoel完成签到,获得积分10
3秒前
3秒前
xzf1996完成签到,获得积分10
4秒前
泥撑完成签到,获得积分10
4秒前
娃哈哈完成签到,获得积分10
4秒前
无心的仙人掌完成签到,获得积分10
5秒前
yznfly应助棋士采纳,获得30
5秒前
5秒前
笨蛋没烦恼完成签到,获得积分10
5秒前
5秒前
桐桐应助健忘的柠檬采纳,获得10
6秒前
小刺猬完成签到,获得积分10
6秒前
桐桐应助xjdb123采纳,获得10
6秒前
7秒前
8秒前
SYLH应助hkh采纳,获得10
8秒前
SYLH应助hkh采纳,获得10
8秒前
SYLH应助hkh采纳,获得10
8秒前
科研通AI2S应助hkh采纳,获得10
8秒前
孙友浩完成签到,获得积分10
8秒前
SYLH应助hkh采纳,获得10
8秒前
欧阳静芙完成签到,获得积分10
9秒前
SYLH应助hkh采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
小熊完成签到,获得积分10
9秒前
demo完成签到,获得积分10
9秒前
薛定谔的柯基完成签到,获得积分10
10秒前
Hello应助贪玩的德地采纳,获得10
10秒前
lili发布了新的文献求助10
11秒前
张光光发布了新的文献求助10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960479
求助须知:如何正确求助?哪些是违规求助? 3506634
关于积分的说明 11131585
捐赠科研通 3238880
什么是DOI,文献DOI怎么找? 1789914
邀请新用户注册赠送积分活动 872039
科研通“疑难数据库(出版商)”最低求助积分说明 803124