A Systematic Review of Individual Tree Crown Detection and Delineation with Convolutional Neural Networks (CNN)

卷积神经网络 计算机科学 人工智能 机器学习 树(集合论) 深度学习 领域(数学) 决策树 数据挖掘 模式识别(心理学) 数学 数学分析 纯数学
作者
Haotian Zhao,Justin Morgenroth,Grant D. Pearse,Jan Schindler
出处
期刊:Current forestry reports [Springer Science+Business Media]
卷期号:9 (3): 149-170 被引量:31
标识
DOI:10.1007/s40725-023-00184-3
摘要

Abstract Purpose of Review Crown detection and measurement at the individual tree level provide detailed information for accurate forest management. To efficiently acquire such information, approaches to conduct individual tree detection and crown delineation (ITDCD) using remotely sensed data have been proposed. In recent years, deep learning, specifically convolutional neural networks (CNN), has shown potential in this field. This article provides a systematic review of the studies that used CNN for ITDCD and identifies major trends and research gaps across six perspectives: accuracy assessment methods, data types, platforms and resolutions, forest environments, CNN models, and training strategies and techniques. Recent Findings CNN models were mostly applied to high-resolution red–green–blue (RGB) images. When compared with other state-of-the-art approaches, CNN models showed significant improvements in accuracy. One study reported an increase in detection accuracy of over 11%, while two studies reported increases in F1-score of over 16%. However, model performance varied across different forest environments and data types. Several factors including data scarcity, model selection, and training approaches affected ITDCD results. Summary Future studies could (1) explore data fusion approaches to take advantage of the characteristics of different types of remote sensing data, (2) further improve data efficiency with customised sample approaches and synthetic samples, (3) explore the potential of smaller CNN models and compare their learning efficiency with commonly used models, and (4) evaluate impacts of pre-training and parameter tunings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开朗的钻石完成签到,获得积分10
刚刚
小枣发布了新的文献求助10
刚刚
Jj7完成签到,获得积分10
4秒前
菲菲发布了新的文献求助10
5秒前
7秒前
7秒前
8秒前
9秒前
碧蓝的老鼠完成签到,获得积分20
9秒前
9秒前
10秒前
科目三应助zp采纳,获得10
10秒前
刘鑫东完成签到,获得积分20
10秒前
super发布了新的文献求助30
11秒前
LLC发布了新的文献求助10
11秒前
传奇3应助文静达采纳,获得10
14秒前
JG完成签到 ,获得积分10
14秒前
三三四完成签到,获得积分10
15秒前
iwwwwwn发布了新的文献求助10
15秒前
zqq完成签到,获得积分10
15秒前
Giner发布了新的文献求助10
15秒前
16秒前
17秒前
17秒前
17秒前
tree完成签到,获得积分10
19秒前
adeno发布了新的文献求助10
21秒前
22秒前
zyq发布了新的文献求助10
23秒前
23秒前
zheer发布了新的文献求助30
23秒前
23秒前
CC完成签到 ,获得积分10
24秒前
彭于晏应助Natsume采纳,获得10
25秒前
彩色的芝麻完成签到 ,获得积分10
27秒前
27秒前
菲菲完成签到,获得积分20
27秒前
曹志毅发布了新的文献求助10
28秒前
qq完成签到,获得积分10
29秒前
Ail完成签到,获得积分10
32秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761949
求助须知:如何正确求助?哪些是违规求助? 3305642
关于积分的说明 10135083
捐赠科研通 3019747
什么是DOI,文献DOI怎么找? 1658374
邀请新用户注册赠送积分活动 792030
科研通“疑难数据库(出版商)”最低求助积分说明 754783