A Systematic Review of Individual Tree Crown Detection and Delineation with Convolutional Neural Networks (CNN)

卷积神经网络 计算机科学 人工智能 机器学习 树(集合论) 深度学习 领域(数学) 决策树 数据挖掘 模式识别(心理学) 数学 数学分析 纯数学
作者
Haotian Zhao,Justin Morgenroth,Grant D. Pearse,Jan Schindler
出处
期刊:Current forestry reports [Springer Nature]
卷期号:9 (3): 149-170 被引量:31
标识
DOI:10.1007/s40725-023-00184-3
摘要

Abstract Purpose of Review Crown detection and measurement at the individual tree level provide detailed information for accurate forest management. To efficiently acquire such information, approaches to conduct individual tree detection and crown delineation (ITDCD) using remotely sensed data have been proposed. In recent years, deep learning, specifically convolutional neural networks (CNN), has shown potential in this field. This article provides a systematic review of the studies that used CNN for ITDCD and identifies major trends and research gaps across six perspectives: accuracy assessment methods, data types, platforms and resolutions, forest environments, CNN models, and training strategies and techniques. Recent Findings CNN models were mostly applied to high-resolution red–green–blue (RGB) images. When compared with other state-of-the-art approaches, CNN models showed significant improvements in accuracy. One study reported an increase in detection accuracy of over 11%, while two studies reported increases in F1-score of over 16%. However, model performance varied across different forest environments and data types. Several factors including data scarcity, model selection, and training approaches affected ITDCD results. Summary Future studies could (1) explore data fusion approaches to take advantage of the characteristics of different types of remote sensing data, (2) further improve data efficiency with customised sample approaches and synthetic samples, (3) explore the potential of smaller CNN models and compare their learning efficiency with commonly used models, and (4) evaluate impacts of pre-training and parameter tunings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助赵先森采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
兔兔完成签到,获得积分10
3秒前
5秒前
5秒前
6秒前
Bi8bo完成签到,获得积分10
8秒前
能干翅膀发布了新的文献求助10
8秒前
8秒前
小滨发布了新的文献求助10
9秒前
顾矜应助暴躁的紫伊采纳,获得10
9秒前
大胆诗霜发布了新的文献求助10
9秒前
10秒前
喬木发布了新的文献求助10
10秒前
duou完成签到,获得积分20
10秒前
猪猪女孩发布了新的文献求助10
13秒前
Bi8bo发布了新的文献求助10
14秒前
a水爱科研完成签到 ,获得积分10
14秒前
大个应助宇文无施采纳,获得10
15秒前
16秒前
科目三应助houbinghua采纳,获得10
17秒前
BareBear应助jeffery111采纳,获得10
17秒前
草莓完成签到 ,获得积分10
18秒前
19秒前
淡然幻柏发布了新的文献求助10
19秒前
21秒前
24秒前
星桥火树彻明开完成签到,获得积分10
24秒前
丰知然应助喬木采纳,获得10
25秒前
毛豆应助欣欣采纳,获得10
25秒前
福居菜鸟完成签到,获得积分10
25秒前
23完成签到,获得积分10
25秒前
26秒前
糖糖谈糖糖完成签到,获得积分10
26秒前
26秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312284
求助须知:如何正确求助?哪些是违规求助? 2944917
关于积分的说明 8522096
捐赠科研通 2620692
什么是DOI,文献DOI怎么找? 1432995
科研通“疑难数据库(出版商)”最低求助积分说明 664817
邀请新用户注册赠送积分活动 650147