Disruptions in Megaregional Network Evacuations: Identifying and Assessing Critical Links

中间性中心性 弹性(材料科学) 计算机科学 危害 流量网络 中心性 运输工程 运筹学 风险分析(工程) 工程类 业务 热力学 组合数学 物理 数学优化 有机化学 化学 数学
作者
Mohammad Shapouri,James David Fuller,Brian Wolshon,Nélida Herrera
出处
期刊:Transportation Research Record [SAGE Publishing]
卷期号:2677 (9): 669-682 被引量:1
标识
DOI:10.1177/03611981231160156
摘要

Mass evacuations are a protective action to move large populations from hazardous areas to safety. However, even the best-planned evacuations can be slowed by unexpected disruptions, such as traffic incidents. Even minor disruptions can significantly slow evacuations, so it is critical to understand which links are most vital to the operation of the system. This paper describes a study to address that need by developing a method to evaluate large networks more efficiently to identify links that disproportionately increase network delay when affected by disruptive incidents. The study is unique because it examined the impact of individual link disruptions over a megaregional network covering thousands of square miles while drastically reducing the computation time necessary for a traditional full-scan analysis. In the research, link criticality was quantified by an index using factors such as alternative path availability, global maximum flow properties, modified betweenness centrality, and hazard exposure. Links with high indices established an initial “most-critical” list, then agent-based simulation was used to quantify the network-wide effects of disrupting these most-critical links. Results showed that links with the highest indices often had the fewest alternative paths to avoid them. Thus, while incident effects tended to be localized, findings suggest that networks with more path alternatives tend to have higher overall resilience to disruptions. By giving the ability to reduce computational efforts to evaluate large-scale networks, this methodology can be used in emergency planning to focus monitoring on the most important areas and allow them to be monitored for disruptions to maintain network efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助luo采纳,获得10
1秒前
开开开完成签到,获得积分10
2秒前
雾影觅光完成签到,获得积分10
2秒前
DijiaXu应助樊珩采纳,获得10
2秒前
英吉利25发布了新的文献求助30
3秒前
lennon完成签到,获得积分10
3秒前
3秒前
善学以致用应助汪萌采纳,获得10
4秒前
yyuu发布了新的文献求助10
4秒前
多米完成签到,获得积分10
6秒前
6秒前
hui完成签到,获得积分10
7秒前
zws完成签到,获得积分10
7秒前
无花果应助banban采纳,获得10
7秒前
隐形曼青应助aqione采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
朝暮完成签到 ,获得积分10
11秒前
完美世界应助樊珩采纳,获得10
11秒前
12秒前
土书完成签到,获得积分10
13秒前
zz完成签到,获得积分10
14秒前
guibuzi完成签到,获得积分10
16秒前
罗小学完成签到,获得积分10
16秒前
gngxnh完成签到 ,获得积分10
16秒前
小张完成签到,获得积分10
16秒前
17秒前
当归发布了新的文献求助10
18秒前
19秒前
19秒前
阿明完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助10
20秒前
21秒前
wjp完成签到 ,获得积分10
22秒前
111发布了新的文献求助10
22秒前
23秒前
乐观的大开关注了科研通微信公众号
24秒前
朴实的白玉完成签到,获得积分10
24秒前
冰山未闯完成签到,获得积分10
25秒前
杨海英发布了新的文献求助10
25秒前
刘显波完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5109272
求助须知:如何正确求助?哪些是违规求助? 4318042
关于积分的说明 13453386
捐赠科研通 4147922
什么是DOI,文献DOI怎么找? 2272930
邀请新用户注册赠送积分活动 1275085
关于科研通互助平台的介绍 1213282