GCCN: Graph Capsule Convolutional Network for Progressive Mild Cognitive Impairment Prediction and Pathogenesis Identification Based on Imaging Genetic Data

判别式 计算机科学 人工智能 图形 发病机制 计算生物学 模式识别(心理学) 医学 生物 理论计算机科学 免疫学
作者
Junliang Shang,Qi Zou,Qianqian Ren,Boxin Guan,Feng Li,Jin‐Xing Liu,Yan Sun
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (6): 2968-2979
标识
DOI:10.1109/jbhi.2023.3262948
摘要

In this study, we proposed a novel method called the graph capsule convolutional network (GCCN) to predict the progression from mild cognitive impairment to dementia and identify its pathogenesis. First, we proposed a novel risk gene discovery component to indirectly target genes with higher interactions with others. These risk genes and brain regions were collected as nodes to construct heterogeneous pathogenic information association graphs. Second, the graph capsules were established by projecting heterogeneous pathogenic information into a set of disentangled latent components. The orientation and length of capsules are representations of the format and intensity of pathogenic information. Third, graph capsule convolution network was used to model the information flows among pathogenic factors and elaborates the convergence of primary capsules to advanced capsules. The advanced capsule is a concept that organizes pathogenic information based on its consistency, and the synergistic effects of advanced capsules directed the development of the disease. Finally, discriminative pathogenic information flows were captured by a straightforward built-in interpretation mechanism, i.e., the dynamic routing mechanism, and applied to the identification of pathogenesis. GCCN has been experimentally shown to be significantly advanced on public datasets. Further experiments have shown that the pathogenic factors identified by GCCN are evidential and closely related to progressive mild cognitive impairment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助30
刚刚
pearsir发布了新的文献求助10
2秒前
一颗苹果完成签到,获得积分10
3秒前
映城应助瓜地学龙叫采纳,获得30
3秒前
4秒前
毕春宇发布了新的文献求助10
8秒前
一丁雨完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
13秒前
乐乐发布了新的文献求助10
13秒前
Vivianne发布了新的文献求助10
17秒前
大胆班完成签到,获得积分10
19秒前
乐乐完成签到,获得积分20
20秒前
20秒前
21秒前
Qing完成签到,获得积分10
21秒前
21秒前
Cupid完成签到,获得积分10
23秒前
24秒前
哈哈哈发布了新的文献求助30
24秒前
25秒前
张成协发布了新的文献求助10
26秒前
MMX完成签到,获得积分10
26秒前
zym999999发布了新的文献求助10
27秒前
云岫完成签到 ,获得积分10
27秒前
清秀的靖雁应助清玖采纳,获得10
27秒前
28秒前
29秒前
zhang完成签到,获得积分10
29秒前
33秒前
嵩嵩发布了新的文献求助10
34秒前
mmmmm完成签到,获得积分10
35秒前
诸道罡发布了新的文献求助10
36秒前
cxm666发布了新的文献求助10
36秒前
熊i发布了新的文献求助10
38秒前
NexusExplorer应助张成协采纳,获得10
38秒前
深情安青应助科研通管家采纳,获得10
38秒前
华仔应助科研通管家采纳,获得10
39秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958051
求助须知:如何正确求助?哪些是违规求助? 3504213
关于积分的说明 11117431
捐赠科研通 3235582
什么是DOI,文献DOI怎么找? 1788318
邀请新用户注册赠送积分活动 871204
科研通“疑难数据库(出版商)”最低求助积分说明 802511