GCCN: Graph Capsule Convolutional Network for Progressive Mild Cognitive Impairment Prediction and Pathogenesis Identification Based on Imaging Genetic Data

判别式 计算机科学 人工智能 图形 发病机制 计算生物学 模式识别(心理学) 医学 生物 理论计算机科学 免疫学
作者
Junliang Shang,Qi Zou,Qianqian Ren,Boxin Guan,Feng Li,Jin‐Xing Liu,Yan Sun
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (6): 2968-2979
标识
DOI:10.1109/jbhi.2023.3262948
摘要

In this study, we proposed a novel method called the graph capsule convolutional network (GCCN) to predict the progression from mild cognitive impairment to dementia and identify its pathogenesis. First, we proposed a novel risk gene discovery component to indirectly target genes with higher interactions with others. These risk genes and brain regions were collected as nodes to construct heterogeneous pathogenic information association graphs. Second, the graph capsules were established by projecting heterogeneous pathogenic information into a set of disentangled latent components. The orientation and length of capsules are representations of the format and intensity of pathogenic information. Third, graph capsule convolution network was used to model the information flows among pathogenic factors and elaborates the convergence of primary capsules to advanced capsules. The advanced capsule is a concept that organizes pathogenic information based on its consistency, and the synergistic effects of advanced capsules directed the development of the disease. Finally, discriminative pathogenic information flows were captured by a straightforward built-in interpretation mechanism, i.e., the dynamic routing mechanism, and applied to the identification of pathogenesis. GCCN has been experimentally shown to be significantly advanced on public datasets. Further experiments have shown that the pathogenic factors identified by GCCN are evidential and closely related to progressive mild cognitive impairment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
llllzzh完成签到 ,获得积分10
1秒前
robertt完成签到 ,获得积分10
1秒前
无语的惜芹完成签到 ,获得积分10
1秒前
百无禁忌完成签到,获得积分10
2秒前
执着晓亦完成签到 ,获得积分10
2秒前
css完成签到,获得积分10
2秒前
小吃完成签到,获得积分10
2秒前
swing完成签到,获得积分10
4秒前
Lc完成签到,获得积分10
4秒前
tutu完成签到,获得积分10
4秒前
繁荣的行天完成签到,获得积分10
5秒前
djf103完成签到 ,获得积分10
6秒前
菠萝炒蛋加饭完成签到 ,获得积分10
7秒前
明理小凝完成签到 ,获得积分10
8秒前
圣甲虫完成签到 ,获得积分10
8秒前
Clarissa完成签到,获得积分10
9秒前
joyce完成签到,获得积分10
10秒前
10秒前
ao黛雷赫完成签到,获得积分10
10秒前
QL完成签到 ,获得积分10
11秒前
Anonymous完成签到,获得积分10
11秒前
ZXG完成签到,获得积分10
12秒前
大个应助JACK采纳,获得10
13秒前
暗冰不冻应助敏er好学采纳,获得10
13秒前
15秒前
15秒前
pupuply完成签到,获得积分10
16秒前
郑郑郑幸运完成签到 ,获得积分10
16秒前
16秒前
16秒前
憨憨的小于完成签到,获得积分10
17秒前
CDabin完成签到,获得积分10
18秒前
无心的枫完成签到,获得积分10
19秒前
高歌猛进完成签到,获得积分10
19秒前
pupi完成签到 ,获得积分10
19秒前
魔法师完成签到,获得积分10
19秒前
wen_dai完成签到,获得积分10
20秒前
蓝冬发布了新的文献求助50
20秒前
阳光的笑旋完成签到,获得积分10
20秒前
子铭完成签到,获得积分10
20秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167282
求助须知:如何正确求助?哪些是违规求助? 2818793
关于积分的说明 7922334
捐赠科研通 2478522
什么是DOI,文献DOI怎么找? 1320396
科研通“疑难数据库(出版商)”最低求助积分说明 632776
版权声明 602443