Consistency and adversarial semi-supervised learning for medical image segmentation

分割 计算机科学 鉴别器 人工智能 一致性(知识库) 半监督学习 深度学习 图像分割 眼底(子宫) 监督学习 模式识别(心理学) 机器学习 计算机视觉 医学 人工神经网络 电信 探测器 眼科
作者
Yongqiang Tang,Shilei Wang,Yuxun Qu,Zhihua Cui,Wensheng Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:161: 107018-107018 被引量:6
标识
DOI:10.1016/j.compbiomed.2023.107018
摘要

Medical image segmentation based on deep learning has made enormous progress in recent years. However, the performance of existing methods generally heavily relies on a large amount of labeled data, which are commonly expensive and time-consuming to obtain. To settle above issue, in this paper, a novel semi-supervised medical image segmentation method is proposed, in which the adversarial training mechanism and the collaborative consistency learning strategy are introduced into the mean teacher model. With the adversarial training mechanism, the discriminator can generate confidence maps for unlabeled data, such that more reliable supervised information for the student network is exploited. In the process of adversarial training, we further propose a collaborative consistency learning strategy by which the auxiliary discriminator can assist the primary discriminator in achieving supervised information with higher quality. We extensively evaluate our method on three representative yet challenging medical image segmentation tasks: (1) skin lesion segmentation from dermoscopy images in the International Skin Imaging Collaboration (ISIC) 2017 dataset; (2) optic cup and optic disk (OC/OD) segmentation from fundus images in the Retinal Fundus Glaucoma Challenge (REFUGE) dataset; and (3) tumor segmentation from lower-grade glioma (LGG) tumors images. The experimental results validate the superiority and effectiveness of our proposal when compared with the state-of-the-art semi-supervised medical image segmentation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YA发布了新的文献求助10
1秒前
1秒前
qiu完成签到,获得积分20
2秒前
sfzz发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
3秒前
科研通AI2S应助GUANG采纳,获得10
4秒前
共享精神应助鳗鱼凡波采纳,获得10
4秒前
4秒前
踏实采波完成签到,获得积分10
5秒前
传奇3应助沉默的半鬼采纳,获得10
5秒前
大鸣王潮完成签到,获得积分10
6秒前
西早发布了新的文献求助10
6秒前
msss11511完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
小白鞋完成签到 ,获得积分10
8秒前
迷路的沛山完成签到,获得积分10
8秒前
潮湿梦完成签到,获得积分10
8秒前
9秒前
孤星独韵发布了新的文献求助10
9秒前
坚定的可愁完成签到,获得积分10
9秒前
9秒前
缥缈傥发布了新的文献求助10
9秒前
航小航发布了新的文献求助10
9秒前
詩翰应助幽默雅香采纳,获得30
10秒前
10秒前
潇洒的凌兰完成签到,获得积分10
10秒前
小明发布了新的文献求助10
11秒前
12秒前
闹闹完成签到,获得积分10
12秒前
米奇完成签到,获得积分10
12秒前
河师大发布了新的文献求助10
13秒前
Akim应助潮湿梦采纳,获得10
13秒前
不将就1345应助动听的笑南采纳,获得20
13秒前
14秒前
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3301228
求助须知:如何正确求助?哪些是违规求助? 2935961
关于积分的说明 8475259
捐赠科研通 2609583
什么是DOI,文献DOI怎么找? 1424790
科研通“疑难数据库(出版商)”最低求助积分说明 662126
邀请新用户注册赠送积分活动 646117