Consistency and adversarial semi-supervised learning for medical image segmentation

分割 计算机科学 鉴别器 人工智能 一致性(知识库) 半监督学习 深度学习 图像分割 眼底(子宫) 监督学习 模式识别(心理学) 机器学习 计算机视觉 医学 人工神经网络 电信 探测器 眼科
作者
Yongqiang Tang,Shilei Wang,Yuxun Qu,Zhihua Cui,Wensheng Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:161: 107018-107018 被引量:17
标识
DOI:10.1016/j.compbiomed.2023.107018
摘要

Medical image segmentation based on deep learning has made enormous progress in recent years. However, the performance of existing methods generally heavily relies on a large amount of labeled data, which are commonly expensive and time-consuming to obtain. To settle above issue, in this paper, a novel semi-supervised medical image segmentation method is proposed, in which the adversarial training mechanism and the collaborative consistency learning strategy are introduced into the mean teacher model. With the adversarial training mechanism, the discriminator can generate confidence maps for unlabeled data, such that more reliable supervised information for the student network is exploited. In the process of adversarial training, we further propose a collaborative consistency learning strategy by which the auxiliary discriminator can assist the primary discriminator in achieving supervised information with higher quality. We extensively evaluate our method on three representative yet challenging medical image segmentation tasks: (1) skin lesion segmentation from dermoscopy images in the International Skin Imaging Collaboration (ISIC) 2017 dataset; (2) optic cup and optic disk (OC/OD) segmentation from fundus images in the Retinal Fundus Glaucoma Challenge (REFUGE) dataset; and (3) tumor segmentation from lower-grade glioma (LGG) tumors images. The experimental results validate the superiority and effectiveness of our proposal when compared with the state-of-the-art semi-supervised medical image segmentation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
刚刚
1秒前
浮游应助十八鱼采纳,获得10
2秒前
bemyselfelsa发布了新的文献求助10
2秒前
李秋静完成签到,获得积分10
3秒前
4秒前
不知完成签到,获得积分20
4秒前
安年发布了新的文献求助10
5秒前
shenwei发布了新的文献求助10
5秒前
5秒前
q额发布了新的文献求助10
6秒前
林小雨完成签到,获得积分10
6秒前
DC发布了新的文献求助10
7秒前
7秒前
7秒前
蓝风铃发布了新的文献求助10
8秒前
小太阳完成签到,获得积分10
8秒前
在水一方应助含蓄的敏采纳,获得10
9秒前
9秒前
wx完成签到,获得积分10
9秒前
11秒前
12秒前
小太阳发布了新的文献求助10
12秒前
海城好人完成签到,获得积分10
13秒前
13秒前
天天快乐应助王jj采纳,获得10
13秒前
桐桐应助如意的青亦采纳,获得10
13秒前
星辰大海应助404NotFOUND采纳,获得30
14秒前
石东明发布了新的文献求助10
14秒前
14秒前
Doctor姜完成签到 ,获得积分10
15秒前
15秒前
天天快乐应助zhangzhibin采纳,获得10
16秒前
16秒前
dsa发布了新的文献求助50
17秒前
科目三应助DC采纳,获得10
17秒前
cappuccino完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300188
求助须知:如何正确求助?哪些是违规求助? 4448119
关于积分的说明 13844972
捐赠科研通 4333773
什么是DOI,文献DOI怎么找? 2379109
邀请新用户注册赠送积分活动 1374221
关于科研通互助平台的介绍 1339946