Consistency and adversarial semi-supervised learning for medical image segmentation

分割 计算机科学 鉴别器 人工智能 一致性(知识库) 半监督学习 深度学习 图像分割 眼底(子宫) 监督学习 模式识别(心理学) 机器学习 计算机视觉 医学 人工神经网络 电信 探测器 眼科
作者
Yongqiang Tang,Shilei Wang,Yuxun Qu,Zhihua Cui,Wensheng Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:161: 107018-107018 被引量:6
标识
DOI:10.1016/j.compbiomed.2023.107018
摘要

Medical image segmentation based on deep learning has made enormous progress in recent years. However, the performance of existing methods generally heavily relies on a large amount of labeled data, which are commonly expensive and time-consuming to obtain. To settle above issue, in this paper, a novel semi-supervised medical image segmentation method is proposed, in which the adversarial training mechanism and the collaborative consistency learning strategy are introduced into the mean teacher model. With the adversarial training mechanism, the discriminator can generate confidence maps for unlabeled data, such that more reliable supervised information for the student network is exploited. In the process of adversarial training, we further propose a collaborative consistency learning strategy by which the auxiliary discriminator can assist the primary discriminator in achieving supervised information with higher quality. We extensively evaluate our method on three representative yet challenging medical image segmentation tasks: (1) skin lesion segmentation from dermoscopy images in the International Skin Imaging Collaboration (ISIC) 2017 dataset; (2) optic cup and optic disk (OC/OD) segmentation from fundus images in the Retinal Fundus Glaucoma Challenge (REFUGE) dataset; and (3) tumor segmentation from lower-grade glioma (LGG) tumors images. The experimental results validate the superiority and effectiveness of our proposal when compared with the state-of-the-art semi-supervised medical image segmentation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宓广缘发布了新的文献求助30
1秒前
yu777发布了新的文献求助30
2秒前
cavalry发布了新的文献求助10
3秒前
abjz完成签到,获得积分10
4秒前
simon完成签到,获得积分10
6秒前
可爱的函函应助123采纳,获得10
9秒前
9秒前
littleby完成签到,获得积分10
10秒前
10秒前
朝气蓬勃完成签到,获得积分10
12秒前
慕青应助Tsui采纳,获得10
13秒前
百里健柏完成签到,获得积分10
13秒前
李健应助21采纳,获得10
14秒前
14秒前
15秒前
刘莲芒果冰完成签到,获得积分10
17秒前
17秒前
18秒前
18秒前
生动访云发布了新的文献求助10
19秒前
Dracoon发布了新的文献求助10
19秒前
20秒前
麦苗果果发布了新的文献求助10
21秒前
123完成签到,获得积分20
21秒前
领导范儿应助余闻问采纳,获得10
21秒前
wyx完成签到,获得积分10
22秒前
22秒前
情怀应助半个桃子采纳,获得30
22秒前
zx发布了新的文献求助10
22秒前
littleby发布了新的文献求助10
23秒前
斯文败类应助猪猪hero采纳,获得10
24秒前
123发布了新的文献求助10
25秒前
25秒前
欢喜可愁完成签到 ,获得积分10
27秒前
27秒前
29秒前
30秒前
生动访云完成签到,获得积分10
31秒前
32秒前
32秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959210
求助须知:如何正确求助?哪些是违规求助? 3505538
关于积分的说明 11124306
捐赠科研通 3237248
什么是DOI,文献DOI怎么找? 1789010
邀请新用户注册赠送积分活动 871512
科研通“疑难数据库(出版商)”最低求助积分说明 802824