Consistency and adversarial semi-supervised learning for medical image segmentation

分割 计算机科学 鉴别器 人工智能 一致性(知识库) 半监督学习 深度学习 图像分割 眼底(子宫) 监督学习 模式识别(心理学) 机器学习 计算机视觉 医学 人工神经网络 电信 探测器 眼科
作者
Yongqiang Tang,Shilei Wang,Yuxun Qu,Zhihua Cui,Wensheng Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:161: 107018-107018 被引量:17
标识
DOI:10.1016/j.compbiomed.2023.107018
摘要

Medical image segmentation based on deep learning has made enormous progress in recent years. However, the performance of existing methods generally heavily relies on a large amount of labeled data, which are commonly expensive and time-consuming to obtain. To settle above issue, in this paper, a novel semi-supervised medical image segmentation method is proposed, in which the adversarial training mechanism and the collaborative consistency learning strategy are introduced into the mean teacher model. With the adversarial training mechanism, the discriminator can generate confidence maps for unlabeled data, such that more reliable supervised information for the student network is exploited. In the process of adversarial training, we further propose a collaborative consistency learning strategy by which the auxiliary discriminator can assist the primary discriminator in achieving supervised information with higher quality. We extensively evaluate our method on three representative yet challenging medical image segmentation tasks: (1) skin lesion segmentation from dermoscopy images in the International Skin Imaging Collaboration (ISIC) 2017 dataset; (2) optic cup and optic disk (OC/OD) segmentation from fundus images in the Retinal Fundus Glaucoma Challenge (REFUGE) dataset; and (3) tumor segmentation from lower-grade glioma (LGG) tumors images. The experimental results validate the superiority and effectiveness of our proposal when compared with the state-of-the-art semi-supervised medical image segmentation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
量子星尘发布了新的文献求助10
2秒前
小张z完成签到,获得积分10
2秒前
deletelzr完成签到,获得积分10
2秒前
2秒前
群山发布了新的文献求助10
3秒前
青柠完成签到,获得积分10
3秒前
wangzengyan完成签到,获得积分10
3秒前
海绵梅完成签到 ,获得积分10
3秒前
hhh完成签到,获得积分10
4秒前
4秒前
JJ发布了新的文献求助10
4秒前
4秒前
小lu完成签到,获得积分10
5秒前
vigour发布了新的文献求助10
5秒前
lilili发布了新的文献求助10
5秒前
好钟意呀发布了新的文献求助10
5秒前
yiping完成签到,获得积分10
6秒前
奋斗的猪大肠完成签到,获得积分10
6秒前
liangmh完成签到,获得积分10
6秒前
Akim应助机灵的以筠采纳,获得10
7秒前
CodeCraft应助妙木仙采纳,获得10
7秒前
杨潇丶丶完成签到,获得积分10
7秒前
清秀语梦发布了新的文献求助10
7秒前
8秒前
Ava应助小研同学采纳,获得10
8秒前
8秒前
8秒前
JPH1990完成签到,获得积分10
8秒前
xue发布了新的文献求助10
9秒前
9秒前
CN完成签到,获得积分10
10秒前
10秒前
YL发布了新的文献求助10
10秒前
ommphey完成签到 ,获得积分10
11秒前
11秒前
李123发布了新的文献求助10
12秒前
酷炫黄蜂完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助30
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718472
求助须知:如何正确求助?哪些是违规求助? 5252894
关于积分的说明 15285900
捐赠科研通 4868646
什么是DOI,文献DOI怎么找? 2614347
邀请新用户注册赠送积分活动 1564180
关于科研通互助平台的介绍 1521729