气凝胶
材料科学
结晶度
聚苯胺
纳米纤维素
复合材料
生物相容性
化学工程
聚合物
电导率
导电聚合物
纳米技术
化学
纤维素
冶金
物理化学
工程类
聚合
作者
Weijie Lin,Shuai Wu,Shibo Han,Jie Xie,Hongshen He,Qiuxia Zou,Dezhong Xu,Dengwen Ning,Ajoy Kanti Mondal,Fang Huang
标识
DOI:10.1016/j.ijbiomac.2023.125010
摘要
The highly conductive and elastic three-dimensional mesh porous material is an ideal platform for the fabrication of high electrical conductivity conductive aerogels. Herein, a multifunctional aerogel that is lightweight, highly conductive and stable sensing properties is reported. Tunicate nanocellulose (TCNCs) with a high aspect ratio, high Young's modulus, high crystallinity, good biocompatibility and biodegradability was used as the basic skeleton to prepare aerogel by freeze-drying technique. Alkali lignin (AL) was used as the raw material, polyethylene glycol diglycidyl ether (PEGDGE) was used as the cross-linking agent, and polyaniline (PANI) was used as the conductive polymer. Preparation of aerogels by freeze-drying technique, in situ synthesis of PANI, and construction of highly conductive aerogel from lignin/TCNCs. The structure, morphology and crystallinity of the aerogel were characterized by FT-IR, SEM, and XRD. The results show that the aerogel has good conductivity (as high as 5.41 S/m) and excellent sensing performance. When the aerogel was assembled as a supercapacitor, the maximum specific capacitance can reach 772 mF/cm2 at 1 mA/cm2 current density, and maximum power and energy density can reach 59.4 μWh/cm2 and 3600 μW/cm2, respectively. It is expected the aerogel can be applied in the field of wearable devices and electronic skin.
科研通智能强力驱动
Strongly Powered by AbleSci AI