光催化
材料科学
异质结
带材弯曲
可见光谱
纳米技术
化学工程
能量转换效率
选择性
光电子学
催化作用
有机化学
工程类
化学
作者
Jiwu Zhao,Qiuying Huang,Zidong Xie,Yuan Liu,Fengkai Liu,Fen Wei,Sibo Wang,Zizhong Zhang,Rusheng Yuan,Kaifeng Wu,Zhengxin Ding,Jinlin Long
标识
DOI:10.1021/acsami.3c03255
摘要
Light-driven valorization conversion of CO2 is an encouraging carbon-negative pathway that shifts energy-reliance from fossil fuels to renewables. Herein, a hierarchical urchin-like hollow-TiO2@CdS/ZnS (HTO@CdS/ZnS) Z-scheme hybrid synthesized by an in situ self-assembly strategy presents superior photocatalytic CO2-to-CO activity with nearly 100% selectivity. Specifically, benefitting from the reasonable architectural and interface design, as well as surface modification, this benchmarked visible-light-driven photocatalyst achieves a CO output of 62.2 μmol·h-1 and a record apparent quantum yield of 6.54% with the Co(bpy)32+ (bpy = 2,2'-bipyridine) cocatalyst. It rivals all the incumbent selective photocatalytic conversion of CO2 to CO in the CH3CN/H2O/TEOA reaction systems. Specifically, the addition of HTO and stabilized ZnS enables the photocatalyst to effectively upgrade optical and electrical performances, contributing to efficient light-harvesting and photogenerated carrier separation, as well as interfacial charge transfer. The tremendous enhancement of photocatalytic performance reveals the superiority of the Z-scheme heterojunction assembled from HTO and CdS/ZnS, featuring the inner electric field derived from the band bending of HTO@CdS/ZnS make CdS resistant to photocorrosion. This study allows access to inspire studies on rationally modeling and constructing diverse heterostructures for the storage and conversion of renewables and chemicals.
科研通智能强力驱动
Strongly Powered by AbleSci AI