材料科学
超晶格
无定形固体
热电材料
热导率
量子阱
热电效应
量子隧道
凝聚态物理
光电子学
塞贝克系数
光学
复合材料
结晶学
物理
热力学
化学
激光器
作者
Xingkun Ning,Yaolong Dong,Weixiong Jian,JinRong Wang,Wenbo Guo,Shufang Wang
标识
DOI:10.1002/adfm.202303981
摘要
Abstract Quantum well (QW) superlattice is one of the proposals to improve the thermoelectric properties and provide a rich platform for the next generation of thermoelectric device. Previous QW have two main challenges that need to be addressed: i) decrease the electron tunneling across the layers in the semiconductor‐based multiple QWs (MQW), and ii) decrease the thermal conductivity in the oxide‐based MQW. Herein, the study demonstrates amorphous based PbTe/amorphous‐STO MQWs with ultrahigh power factor of 40.9 µW cm −1 K −2 and record low thermal conductivity of ≈0.49 W m −1 K −1 at room temperature. The high performance of PbTe/amorphous‐STO MQWs is attributed to strong quantum confine effect and its intrinsic low thermal conductivity of amorphous superlattice structure. The results open up a new avenue toward modulating thermoelectric properties beyond traditional MQWs of thermoelectric materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI