A review of the application of Density Functional Theory and machine learning for oxidative coupling of methane reaction for ethylene production

甲烷氧化偶联 乙烯 甲烷 密度泛函理论 联轴节(管道) 氧化磷酸化 生产(经济) 化学 计算化学 生化工程 有机化学 化学工程 工程类 催化作用 机械工程 生物化学 经济 宏观经济学
作者
Lord Ugwu,Yasser Morgan,Hussameldin Ibrahim
出处
期刊:Chemical Engineering Communications [Taylor & Francis]
卷期号:211 (8): 1236-1261
标识
DOI:10.1080/00986445.2024.2336234
摘要

The oxidative coupling of methane (OCM) is a reaction with a promise to provide a gainful means of utilizing an abundant greenhouse gas, methane, to produce ethylene; one of the world's most important chemicals is challenged by the co-production of carbon dioxide, another greenhouse gas. The need to find efficient means of enhancing the reaction with a yield of the desirable C2 product and the reduction in the co-production of COx product continues to be the focus of increased research over the past two decades. The advent of modern computational techniques, including Density Functional Theory (DFT), and data analytical techniques, such as Machine Learning (ML), have inspired new ways of generating data and drawing intuition on the ways to improve the efficacy of the OCM reaction. This study focuses on highlighting the innovations carried out in the study of the OCM reaction over the last 22 years: the reaction mechanism, kinetics, and catalytic design. Despite the concerted efforts to model and design new catalysts, the development of improved catalysts that are selective for C2 yields higher than 30% at low temperatures continues to be a bottleneck in the process. The application of ML and DFT in OCM is poised to provide a means to predict, design, and develop new catalysts that will enhance the effectiveness of the reaction and the quality of the products. Both techniques provide opportunities to improve and ameliorate challenges bedeviling the OCM reaction, including the high activation energy, low C2 yield, and catalyst instability/deactivation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dada应助xtt采纳,获得30
刚刚
夸父为什么逐日完成签到,获得积分10
1秒前
我是老大应助zzw54188采纳,获得10
1秒前
orixero应助elsazhou采纳,获得10
5秒前
6秒前
liuerlong完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
zzw54188完成签到,获得积分10
8秒前
顾矜应助huang采纳,获得10
8秒前
爆米花应助猪猪hero采纳,获得10
10秒前
桐桐应助加菲采纳,获得10
10秒前
一杯月光完成签到,获得积分10
10秒前
11秒前
wu8577完成签到 ,获得积分10
12秒前
土豆你个西红柿完成签到 ,获得积分10
12秒前
13秒前
爆米花应助啦啦啦采纳,获得10
13秒前
14秒前
15秒前
英姑应助小鹿5460采纳,获得10
15秒前
Genius发布了新的文献求助10
16秒前
黎_发布了新的文献求助10
16秒前
16秒前
1762571452完成签到,获得积分10
17秒前
cookie发布了新的文献求助10
18秒前
二小完成签到,获得积分20
18秒前
何日寻发布了新的文献求助10
19秒前
21秒前
FashionBoy应助景凤灵采纳,获得10
22秒前
22秒前
23秒前
喜悦万天完成签到 ,获得积分10
23秒前
黎_完成签到,获得积分10
25秒前
wangxiaoqing完成签到,获得积分10
26秒前
yanzu完成签到,获得积分0
26秒前
英姑应助孙朱珠采纳,获得10
26秒前
8R60d8应助dawn采纳,获得10
27秒前
跳跃的迎荷完成签到 ,获得积分10
27秒前
nkdailingyun发布了新的文献求助10
27秒前
zzw54188发布了新的文献求助10
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954521
求助须知:如何正确求助?哪些是违规求助? 3500555
关于积分的说明 11099959
捐赠科研通 3231062
什么是DOI,文献DOI怎么找? 1786258
邀请新用户注册赠送积分活动 869908
科研通“疑难数据库(出版商)”最低求助积分说明 801717