A review of the application of Density Functional Theory and machine learning for oxidative coupling of methane reaction for ethylene production

甲烷氧化偶联 乙烯 甲烷 密度泛函理论 联轴节(管道) 氧化磷酸化 生产(经济) 化学 计算化学 生化工程 有机化学 化学工程 工程类 催化作用 机械工程 生物化学 经济 宏观经济学
作者
Lord Ikechukwu Ugwu,Yasser Morgan,Hussameldin Ibrahim
出处
期刊:Chemical Engineering Communications [Informa]
卷期号:211 (8): 1236-1261
标识
DOI:10.1080/00986445.2024.2336234
摘要

The oxidative coupling of methane (OCM) is a reaction with a promise to provide a gainful means of utilizing an abundant greenhouse gas, methane, to produce ethylene; one of the world's most important chemicals is challenged by the co-production of carbon dioxide, another greenhouse gas. The need to find efficient means of enhancing the reaction with a yield of the desirable C2 product and the reduction in the co-production of COx product continues to be the focus of increased research over the past two decades. The advent of modern computational techniques, including Density Functional Theory (DFT), and data analytical techniques, such as Machine Learning (ML), have inspired new ways of generating data and drawing intuition on the ways to improve the efficacy of the OCM reaction. This study focuses on highlighting the innovations carried out in the study of the OCM reaction over the last 22 years: the reaction mechanism, kinetics, and catalytic design. Despite the concerted efforts to model and design new catalysts, the development of improved catalysts that are selective for C2 yields higher than 30% at low temperatures continues to be a bottleneck in the process. The application of ML and DFT in OCM is poised to provide a means to predict, design, and develop new catalysts that will enhance the effectiveness of the reaction and the quality of the products. Both techniques provide opportunities to improve and ameliorate challenges bedeviling the OCM reaction, including the high activation energy, low C2 yield, and catalyst instability/deactivation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
单薄茗完成签到,获得积分10
1秒前
科研通AI2S应助活力小熊猫采纳,获得10
1秒前
斯文败类应助Kenny采纳,获得10
2秒前
2秒前
科研通AI2S应助金皮卡采纳,获得10
3秒前
Akim应助陈小宇kk采纳,获得10
4秒前
5秒前
5秒前
有机酸关注了科研通微信公众号
5秒前
传奇3应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
Owen应助科研通管家采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
大模型应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
6秒前
打打应助小晋采纳,获得10
7秒前
完美世界应助小龙采纳,获得10
8秒前
zhangxr发布了新的文献求助10
8秒前
俏皮含烟发布了新的文献求助10
10秒前
10秒前
Owen应助乐乐采纳,获得10
12秒前
12秒前
没烦恼完成签到 ,获得积分10
12秒前
李健应助碧蓝大炮采纳,获得10
12秒前
12秒前
13秒前
13秒前
14秒前
lonely发布了新的文献求助10
14秒前
15秒前
Lucas应助zhangxr采纳,获得10
15秒前
雪儿发布了新的文献求助10
16秒前
16秒前
闪闪的雅柔完成签到,获得积分10
16秒前
17秒前
18秒前
ding应助yzqtf采纳,获得10
18秒前
陈小宇kk发布了新的文献求助10
19秒前
闪闪语风发布了新的文献求助10
19秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145912
求助须知:如何正确求助?哪些是违规求助? 2797359
关于积分的说明 7823805
捐赠科研通 2453697
什么是DOI,文献DOI怎么找? 1305818
科研通“疑难数据库(出版商)”最低求助积分说明 627574
版权声明 601491