亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A review of the application of Density Functional Theory and machine learning for oxidative coupling of methane reaction for ethylene production

甲烷氧化偶联 乙烯 甲烷 密度泛函理论 联轴节(管道) 氧化磷酸化 生产(经济) 化学 计算化学 生化工程 有机化学 化学工程 工程类 催化作用 机械工程 生物化学 经济 宏观经济学
作者
Lord Ugwu,Yasser Morgan,Hussameldin Ibrahim
出处
期刊:Chemical Engineering Communications [Taylor & Francis]
卷期号:211 (8): 1236-1261
标识
DOI:10.1080/00986445.2024.2336234
摘要

The oxidative coupling of methane (OCM) is a reaction with a promise to provide a gainful means of utilizing an abundant greenhouse gas, methane, to produce ethylene; one of the world's most important chemicals is challenged by the co-production of carbon dioxide, another greenhouse gas. The need to find efficient means of enhancing the reaction with a yield of the desirable C2 product and the reduction in the co-production of COx product continues to be the focus of increased research over the past two decades. The advent of modern computational techniques, including Density Functional Theory (DFT), and data analytical techniques, such as Machine Learning (ML), have inspired new ways of generating data and drawing intuition on the ways to improve the efficacy of the OCM reaction. This study focuses on highlighting the innovations carried out in the study of the OCM reaction over the last 22 years: the reaction mechanism, kinetics, and catalytic design. Despite the concerted efforts to model and design new catalysts, the development of improved catalysts that are selective for C2 yields higher than 30% at low temperatures continues to be a bottleneck in the process. The application of ML and DFT in OCM is poised to provide a means to predict, design, and develop new catalysts that will enhance the effectiveness of the reaction and the quality of the products. Both techniques provide opportunities to improve and ameliorate challenges bedeviling the OCM reaction, including the high activation energy, low C2 yield, and catalyst instability/deactivation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
27秒前
38秒前
DannyNickolov发布了新的文献求助10
41秒前
42秒前
曲夜白完成签到 ,获得积分10
43秒前
Owen应助荆棘鸟采纳,获得10
44秒前
量子星尘发布了新的文献求助10
50秒前
DannyNickolov完成签到,获得积分10
50秒前
mervin完成签到,获得积分10
1分钟前
1分钟前
Hodlumm发布了新的文献求助10
1分钟前
1分钟前
隐形曼青应助谷千千采纳,获得10
1分钟前
2分钟前
2分钟前
谷千千发布了新的文献求助10
2分钟前
谷千千完成签到,获得积分10
2分钟前
2分钟前
jyy发布了新的文献求助10
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
Shuo应助科研通管家采纳,获得20
3分钟前
搜集达人应助科研通管家采纳,获得10
3分钟前
3分钟前
文艺易蓉发布了新的文献求助10
3分钟前
小蘑菇应助文艺易蓉采纳,获得10
3分钟前
调皮醉波完成签到 ,获得积分10
3分钟前
4分钟前
XiaoLiu完成签到,获得积分10
4分钟前
4分钟前
Dreamer.发布了新的文献求助10
4分钟前
充电宝应助Xinying采纳,获得10
4分钟前
4分钟前
Hvginn完成签到,获得积分10
5分钟前
5分钟前
sc发布了新的文献求助10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
Shuo应助科研通管家采纳,获得20
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596033
求助须知:如何正确求助?哪些是违规求助? 4008156
关于积分的说明 12408892
捐赠科研通 3687052
什么是DOI,文献DOI怎么找? 2032177
邀请新用户注册赠送积分活动 1065413
科研通“疑难数据库(出版商)”最低求助积分说明 950750