A review of the application of Density Functional Theory and machine learning for oxidative coupling of methane reaction for ethylene production

甲烷氧化偶联 乙烯 甲烷 密度泛函理论 联轴节(管道) 氧化磷酸化 生产(经济) 化学 计算化学 生化工程 有机化学 化学工程 工程类 催化作用 机械工程 生物化学 经济 宏观经济学
作者
Lord Ugwu,Yasser Morgan,Hussameldin Ibrahim
出处
期刊:Chemical Engineering Communications [Informa]
卷期号:211 (8): 1236-1261
标识
DOI:10.1080/00986445.2024.2336234
摘要

The oxidative coupling of methane (OCM) is a reaction with a promise to provide a gainful means of utilizing an abundant greenhouse gas, methane, to produce ethylene; one of the world's most important chemicals is challenged by the co-production of carbon dioxide, another greenhouse gas. The need to find efficient means of enhancing the reaction with a yield of the desirable C2 product and the reduction in the co-production of COx product continues to be the focus of increased research over the past two decades. The advent of modern computational techniques, including Density Functional Theory (DFT), and data analytical techniques, such as Machine Learning (ML), have inspired new ways of generating data and drawing intuition on the ways to improve the efficacy of the OCM reaction. This study focuses on highlighting the innovations carried out in the study of the OCM reaction over the last 22 years: the reaction mechanism, kinetics, and catalytic design. Despite the concerted efforts to model and design new catalysts, the development of improved catalysts that are selective for C2 yields higher than 30% at low temperatures continues to be a bottleneck in the process. The application of ML and DFT in OCM is poised to provide a means to predict, design, and develop new catalysts that will enhance the effectiveness of the reaction and the quality of the products. Both techniques provide opportunities to improve and ameliorate challenges bedeviling the OCM reaction, including the high activation energy, low C2 yield, and catalyst instability/deactivation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lurongjun发布了新的文献求助10
1秒前
clock完成签到 ,获得积分10
2秒前
鱼鱼吖发布了新的文献求助10
4秒前
5秒前
6秒前
NexusExplorer应助包容新蕾采纳,获得10
7秒前
zwy应助Matthew采纳,获得10
7秒前
合适一斩发布了新的文献求助30
7秒前
重要冷之发布了新的文献求助10
8秒前
美好斓发布了新的文献求助10
8秒前
ZHANGXUEJUN完成签到,获得积分10
8秒前
11秒前
汉堡完成签到 ,获得积分10
12秒前
13秒前
14秒前
14秒前
852应助小哈采纳,获得10
15秒前
七七发布了新的文献求助10
15秒前
18秒前
黑森林发布了新的文献求助10
19秒前
勤奋的秋寒完成签到,获得积分20
20秒前
AN发布了新的文献求助10
20秒前
脑洞疼应助lull采纳,获得30
21秒前
我是老大应助caoju采纳,获得10
21秒前
文静元霜完成签到,获得积分10
22秒前
22秒前
23秒前
無123发布了新的文献求助10
23秒前
CodeCraft应助wu采纳,获得24
24秒前
量子星尘发布了新的文献求助10
24秒前
sleep举报jing求助涉嫌违规
24秒前
25秒前
26秒前
27秒前
顾矜应助AN采纳,获得10
28秒前
小哈发布了新的文献求助10
28秒前
Jasper应助久伴采纳,获得10
29秒前
乐乐应助Lizicai采纳,获得10
29秒前
拼搏的土豆完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577556
求助须知:如何正确求助?哪些是违规求助? 4662649
关于积分的说明 14742832
捐赠科研通 4603346
什么是DOI,文献DOI怎么找? 2526283
邀请新用户注册赠送积分活动 1496084
关于科研通互助平台的介绍 1465546