大流行
严重急性呼吸综合征冠状病毒2型(SARS-CoV-2)
2019年冠状病毒病(COVID-19)
2019-20冠状病毒爆发
病毒学
微生物学
生物
医学
传染病(医学专业)
爆发
疾病
病理
作者
Radu Lefter,Prairna Balyan,Ioana-Miruna Balmuș,Abdellah Ech‐Chahad,Ahmad Ali,Alin Ciobîcă,Antoneta Dacia Petroaie,Gabriela Halitchi,Bogdan Novac,Cătălina Ionescu,Fatima Zahra Kamal
标识
DOI:10.3390/microbiolres15020035
摘要
Infection with the novel coronavirus SARS-CoV-2, the cause of coronavirus disease (COVID-19), has emerged as a global pandemic, with a high toll on casualties, economic impact, and human lifestyle. Despite the recent approval of various vaccines against the virus, challenges remain, including the limited availability of these vaccines, the prevalent rejection of vaccination by a large proportion of the population, and the recurrent appearance of new variants of the virus due to mutations. This context raises the alarm for scientists and clinicians to seek alternative and complementary therapies. In this context, natural products and their derivatives serve as reservoirs for potential therapeutic compounds that can be exploited in the research and production of antiviral drugs against COVID-19. Among these substances, lectin and polysaccharides isolated from fauna and flora emerge as complementary strategies for treating coronavirus infection. The review objective is to cover and analyze the specific role of polysaccharides and lectins and their synergy in the fight against this deadly SARS-CoV-2 virus. For this purpose, a primary literature search was conducted on Google Scholar, PubMed, and Web of Sciences using relevant keywords like “SARS-CoV-2 Variants”; “Antiviral Strategies”; “Antiviral Polysaccharides”; “Antiviral Lectins”; and “Synergistic effect”. The results demonstrate that lectins and polysaccharides exhibit antiviral activities against SARS-CoV-2 via mechanisms related to binding and steric blocking, the binding of glycan-based decoys, chemical reactions, virus particle disruption strategies, and steric blocking for competitive inhibition to block SARS-CoV-2 and its variants’ entry. In addition, this review analyzes the rationale behind combining polysaccharides and lectins, emphasizing complementary mechanisms of action. By simultaneously targeting multiple stages of the viral life cycle, this dual strategy aims to comprehensively inhibit viral propagation and enhance the durability of antiviral strategies over time.
科研通智能强力驱动
Strongly Powered by AbleSci AI