Recent Advancements on Spin Engineering Strategies for Highly Efficient Electrocatalytic Oxygen Evolution Reactions

析氧 电催化剂 材料科学 纳米技术 分解水 电化学 催化作用 化学 电极 物理化学 生物化学 光催化
作者
Wenli Zhao,Jieyu Yang,Fenghua Xu,Baicheng Weng
出处
期刊:Small [Wiley]
卷期号:20 (34) 被引量:7
标识
DOI:10.1002/smll.202401057
摘要

Oxygen evolution reaction (OER) is a widely employed half-electrode reaction in oxygen electrochemistry, in applications such as hydrogen evolution, carbon dioxide reduction, ammonia synthesis, and electrocatalytic hydrogenation. Unfortunately, its slow kinetics limits the commercialization of such applications. It is therefore highly imperative to develop highly robust electrocatalysts with high activity, long-term durability, and low noble-metal contents. Previously intensive efforts have been made to introduce the advancements on developing non-precious transition metal electrocatalysts and their OER mechanisms. Electronic structure tuning is one of the most effective and interesting ways to boost OER activity and spin angular momentum is an intrinsic property of the electron. Therefore, modulation on the spin states and the magnetic properties of the electrocatalyst enables the changes on energy associated with interacting electron clouds with radical absorbance, affecting the OER activity and stability. Given that few review efforts have been made on this topic, in this review, the-state-of-the-art research progress on spin-dependent effects in OER will be briefed. Spin engineering strategies, such as strain, crystal surface engineering, crystal doping, etc., will be introduced. The related mechanism for spin manipulation to boost OER activity will also be discussed. Finally, the challenges and prospects for the development of spin catalysis are presented. This review aims to highlight the significance of spin engineering in breaking the bottleneck of electrocatalysis and promoting the practical application of high-efficiency electrocatalysts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Suki发布了新的文献求助10
1秒前
1秒前
mirror应助xiang采纳,获得10
1秒前
深年完成签到,获得积分10
2秒前
慕青应助浮云采纳,获得10
4秒前
Everglow完成签到,获得积分10
4秒前
4秒前
6666应助djbj2022采纳,获得10
5秒前
山下梅子酒完成签到 ,获得积分10
6秒前
6秒前
Ava应助木子李采纳,获得10
6秒前
6秒前
6666应助ichia采纳,获得10
7秒前
科研通AI2S应助无语的代真采纳,获得10
7秒前
7秒前
8秒前
9秒前
嗯呐发布了新的文献求助10
11秒前
kk完成签到 ,获得积分10
11秒前
11秒前
善莫大焉发布了新的文献求助10
11秒前
小怪完成签到,获得积分10
11秒前
like发布了新的文献求助10
12秒前
秦风发布了新的文献求助10
13秒前
无奈的醉薇完成签到,获得积分10
14秒前
14秒前
邢江利发布了新的文献求助10
15秒前
Ava应助尤小玉采纳,获得10
15秒前
15秒前
15秒前
叶帆完成签到,获得积分20
15秒前
16秒前
16秒前
尘曦完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
文艺的青旋完成签到 ,获得积分10
18秒前
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5737437
求助须知:如何正确求助?哪些是违规求助? 5372472
关于积分的说明 15335484
捐赠科研通 4880930
什么是DOI,文献DOI怎么找? 2623186
邀请新用户注册赠送积分活动 1571999
关于科研通互助平台的介绍 1528811