Combining Convolutional Neural Networks for Fungi Classification

卷积神经网络 计算机科学 人工智能 模式识别(心理学) 机器学习
作者
Anuruk Prommakhot,Jakkree Srinonchat
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 58021-58030
标识
DOI:10.1109/access.2024.3391630
摘要

Deep learning approaches have shown exceptional efficacy in challenges related to the categorization of images. Nevertheless, the practical use of these methods in classifying fungi faces difficulties due to the distinctive features of fungal morphology and the scarcity of annotated training data. Hence, this study introduces an innovative and inclusive methodology that utilizes the spatial transformer network technique to analyze fungi thoroughly feature alterations. The fungal characteristics are then subjected to processing by integrating four networks. The combined convolutional neural networks are enhanced with adaptive layers, convolutional operations, kernel sizes, dropblock mechanisms, and residual blocks. These components collaborate harmoniously via the concatenate function in the feature mapping process. In that order, the experimental findings demonstrate notable training accuracies, namely 91.89%, 98.24%, 98.49%, and 98.92%. Furthermore, the classification of fungi showcases remarkable precision, achieving high accuracies of 98.91%, 82.50%, 94.11%, 100.0%, and 87.43% for Absidia, Aspergillus, Fusarium, Penicillium, and Rhizopus, respectively. Additionally, the recall performance stood at 100.0%, 87.61%, 96.78%, 100.0%, and 88.45% for Absidia, Aspergillus, Fusarium, Penicillium, and Rhizopus, respectively. The findings of this study suggest that the suggested deep learning approach has considerable promise in developing a reliable system for identifying fungus species.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
米九发布了新的文献求助10
刚刚
Labubuz发布了新的文献求助10
刚刚
沃德天完成签到,获得积分10
刚刚
yy发布了新的文献求助10
刚刚
HIT_C完成签到 ,获得积分10
刚刚
彤彤完成签到,获得积分10
1秒前
刘艳红完成签到,获得积分20
1秒前
阿易发布了新的文献求助10
1秒前
金先生发布了新的文献求助10
2秒前
2秒前
3秒前
所所应助ssong采纳,获得10
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
5秒前
Snoopy发布了新的文献求助10
5秒前
Labubuz完成签到,获得积分10
5秒前
Elma发布了新的文献求助10
6秒前
6秒前
cw完成签到,获得积分10
7秒前
7秒前
aaronroseman完成签到 ,获得积分10
7秒前
大意的棉花糖完成签到 ,获得积分20
7秒前
zho应助董亚琴采纳,获得10
8秒前
8秒前
梦平发布了新的文献求助10
8秒前
英姑应助lmn采纳,获得10
9秒前
hhy完成签到,获得积分10
9秒前
自然的飞雪关注了科研通微信公众号
10秒前
科研通AI6应助橘子采纳,获得10
10秒前
aim发布了新的文献求助10
11秒前
坚定的海白完成签到,获得积分10
11秒前
11秒前
11秒前
米九完成签到,获得积分10
11秒前
虎牙少年发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589211
求助须知:如何正确求助?哪些是违规求助? 4674034
关于积分的说明 14791210
捐赠科研通 4627901
什么是DOI,文献DOI怎么找? 2532185
邀请新用户注册赠送积分活动 1500827
关于科研通互助平台的介绍 1468437