重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Combining Convolutional Neural Networks for Fungi Classification

卷积神经网络 计算机科学 人工智能 模式识别(心理学) 机器学习
作者
Anuruk Prommakhot,Jakkree Srinonchat
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 58021-58030
标识
DOI:10.1109/access.2024.3391630
摘要

Deep learning approaches have shown exceptional efficacy in challenges related to the categorization of images. Nevertheless, the practical use of these methods in classifying fungi faces difficulties due to the distinctive features of fungal morphology and the scarcity of annotated training data. Hence, this study introduces an innovative and inclusive methodology that utilizes the spatial transformer network technique to analyze fungi thoroughly feature alterations. The fungal characteristics are then subjected to processing by integrating four networks. The combined convolutional neural networks are enhanced with adaptive layers, convolutional operations, kernel sizes, dropblock mechanisms, and residual blocks. These components collaborate harmoniously via the concatenate function in the feature mapping process. In that order, the experimental findings demonstrate notable training accuracies, namely 91.89%, 98.24%, 98.49%, and 98.92%. Furthermore, the classification of fungi showcases remarkable precision, achieving high accuracies of 98.91%, 82.50%, 94.11%, 100.0%, and 87.43% for Absidia, Aspergillus, Fusarium, Penicillium, and Rhizopus, respectively. Additionally, the recall performance stood at 100.0%, 87.61%, 96.78%, 100.0%, and 88.45% for Absidia, Aspergillus, Fusarium, Penicillium, and Rhizopus, respectively. The findings of this study suggest that the suggested deep learning approach has considerable promise in developing a reliable system for identifying fungus species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ChenChen完成签到,获得积分10
刚刚
迅速的易巧完成签到 ,获得积分10
刚刚
整齐续完成签到,获得积分20
1秒前
浮游应助MOMO采纳,获得10
1秒前
orixero应助府于杰采纳,获得10
1秒前
三木完成签到,获得积分10
2秒前
breaking发布了新的文献求助10
2秒前
XJ发布了新的文献求助10
2秒前
我是老大应助旺仔采纳,获得10
3秒前
共享精神应助吱唔朱采纳,获得10
3秒前
纪红琴完成签到,获得积分20
3秒前
谨慎青亦发布了新的文献求助10
3秒前
4秒前
Wendy发布了新的文献求助10
4秒前
脑洞疼应助范恒采纳,获得10
4秒前
myLv98完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
6秒前
zhuzhuxia完成签到,获得积分10
7秒前
李健的小迷弟应助叶叶叶采纳,获得10
7秒前
7秒前
在水一方应助孑与采纳,获得10
8秒前
8秒前
谨慎青亦完成签到,获得积分10
8秒前
SciGPT应助ASSA采纳,获得10
9秒前
JamesPei应助小5采纳,获得10
10秒前
黑色天空发布了新的文献求助50
10秒前
qrwyqjbsd应助Draeck采纳,获得10
10秒前
10秒前
一路朝阳完成签到 ,获得积分10
10秒前
平泽唯发布了新的文献求助10
11秒前
Ayers完成签到,获得积分10
11秒前
11秒前
今后应助泰山球迷采纳,获得10
11秒前
一味地丶逞强完成签到,获得积分10
11秒前
洁净的诗云完成签到,获得积分10
11秒前
含着朵白云完成签到 ,获得积分10
12秒前
浮游应助QinCaibin采纳,获得10
12秒前
狂野的衬衫完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467266
求助须知:如何正确求助?哪些是违规求助? 4570917
关于积分的说明 14327656
捐赠科研通 4497524
什么是DOI,文献DOI怎么找? 2463982
邀请新用户注册赠送积分活动 1452857
关于科研通互助平台的介绍 1427654