亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Combining Convolutional Neural Networks for Fungi Classification

卷积神经网络 计算机科学 人工智能 模式识别(心理学) 机器学习
作者
Anuruk Prommakhot,Jakkree Srinonchat
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 58021-58030
标识
DOI:10.1109/access.2024.3391630
摘要

Deep learning approaches have shown exceptional efficacy in challenges related to the categorization of images. Nevertheless, the practical use of these methods in classifying fungi faces difficulties due to the distinctive features of fungal morphology and the scarcity of annotated training data. Hence, this study introduces an innovative and inclusive methodology that utilizes the spatial transformer network technique to analyze fungi thoroughly feature alterations. The fungal characteristics are then subjected to processing by integrating four networks. The combined convolutional neural networks are enhanced with adaptive layers, convolutional operations, kernel sizes, dropblock mechanisms, and residual blocks. These components collaborate harmoniously via the concatenate function in the feature mapping process. In that order, the experimental findings demonstrate notable training accuracies, namely 91.89%, 98.24%, 98.49%, and 98.92%. Furthermore, the classification of fungi showcases remarkable precision, achieving high accuracies of 98.91%, 82.50%, 94.11%, 100.0%, and 87.43% for Absidia, Aspergillus, Fusarium, Penicillium, and Rhizopus, respectively. Additionally, the recall performance stood at 100.0%, 87.61%, 96.78%, 100.0%, and 88.45% for Absidia, Aspergillus, Fusarium, Penicillium, and Rhizopus, respectively. The findings of this study suggest that the suggested deep learning approach has considerable promise in developing a reliable system for identifying fungus species.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
小李发布了新的文献求助10
3秒前
6秒前
健壮不斜完成签到 ,获得积分10
7秒前
鱼鱼完成签到 ,获得积分10
8秒前
12秒前
天天快乐完成签到,获得积分10
12秒前
Hello应助暴走乄采纳,获得10
12秒前
17秒前
无花果应助Davidjin采纳,获得10
23秒前
25秒前
26秒前
牛先生生完成签到,获得积分10
26秒前
yanzilin完成签到 ,获得积分10
29秒前
33秒前
纯真如松完成签到,获得积分10
36秒前
38秒前
暴走乄发布了新的文献求助10
42秒前
Omni完成签到,获得积分10
42秒前
YH完成签到 ,获得积分10
43秒前
背背佳永远happy完成签到 ,获得积分10
48秒前
49秒前
小二郎应助Sylvia卉采纳,获得10
54秒前
漂亮恶天完成签到 ,获得积分10
56秒前
57秒前
小李完成签到,获得积分20
1分钟前
小蘑菇应助天真思山采纳,获得10
1分钟前
1分钟前
1分钟前
Sylvia卉发布了新的文献求助10
1分钟前
吻沇关注了科研通微信公众号
1分钟前
orixero应助biophilia采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
KFC代吃完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
小田完成签到 ,获得积分10
1分钟前
枫cxf163发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723427
求助须知:如何正确求助?哪些是违规求助? 5277359
关于积分的说明 15298691
捐赠科研通 4871918
什么是DOI,文献DOI怎么找? 2616353
邀请新用户注册赠送积分活动 1566189
关于科研通互助平台的介绍 1523069