化学
Atom(片上系统)
纳米技术
环境化学
嵌入式系统
计算机科学
材料科学
作者
Mengqiong Zhang,Guowen Wang,Jiping Chen,Xianbo Lu
标识
DOI:10.1016/j.aca.2024.342628
摘要
Bisphenol compounds (BPA, BPS, BPAF, etc.) are one class of the most important and widespread pollutants that poses severe threat to human health and the ecological environment. Because of the presence of multiple bisphenols in environmental and food samples, it is urgent and challenging to develop a rapid and cheap technique for simultaneously detecting BPA and its analogues. In this study, a series of M-N-C (M = Cu, Mg, Ni, Co, Fe, K) single-atom nanozymes (SAzymes) were created by simulating the structure of natural enzyme molecules, which were used as novel sensing platform for the fabrication of electrochemical sensors. Through systematic screening and characterization, it was interestingly discovered that the electrochemical sensor based on Cu-N-C SAzymes exhibited the best sensing performance for bisphenols among all SAzymes, which catalyzed not only BPA like tyrosinase, but also showed excellent catalytic capacity beyond tyrosinase (tyrosinase has no catalytic activity for BPS, BPAF, etc.), and achieved potential-resolved simultaneous rapid detection of BPA, BPS and BPAF. Further structure-activity relationship and catalytic mechanism characterizations of Cu-N-C SAzymes revealed that the presence of single atom Cu was predominantly in the form of Cu
科研通智能强力驱动
Strongly Powered by AbleSci AI