Innovative Multi-Variable Model Combining MRI Radiomics and Plasma Indexes Predicts Alzheimer's Disease conversion: Evidence from a Two-Cohort Longitudinal Study

无线电技术 队列 疾病 医学 变量(数学) 磁共振成像 内科学 心理学 放射科 数学 数学分析
作者
Ying Han,Yu Xianfeng,Xiaoming Sun,Min Wei,Shuqing Deng,Qi Zhang,Tengfei Guo,Kai Shao,Ming-kai Zhang,Jiehui Jiang
出处
期刊:Research [AAAS00]
卷期号:7 被引量:1
标识
DOI:10.34133/research.0354
摘要

To explore the complementary relationship between magnetic resonance imaging (MRI) radiomic and plasma biomarkers in the early diagnosis and conversion prediction of Alzheimer’s disease (AD), our study aims to develop an innovative multivariable prediction model that integrates those two for predicting conversion results in AD. This longitudinal multicentric cohort study included 2 independent cohorts: the Sino Longitudinal Study on Cognitive Decline (SILCODE) project and the Alzheimer Disease Neuroimaging Initiative (ADNI). We collected comprehensive assessments, MRI, plasma samples, and amyloid positron emission tomography data. A multivariable logistic regression analysis was applied to combine plasma and MRI radiomics biomarkers and generate a new composite indicator. The optimal model’s performance and generalizability were assessed across populations in 2 cross-racial cohorts. A total of 897 subjects were included, including 635 from the SILCODE cohort (mean [SD] age, 64.93 [6.78] years; 343 [63%] female) and 262 from the ADNI cohort (mean [SD] age, 73.96 [7.06] years; 140 [53%] female). The area under the receiver operating characteristic curve of the optimal model was 0.9414 and 0.8979 in the training and validation dataset, respectively. A calibration analysis displayed excellent consistency between the prognosis and actual observation. The findings of the present study provide a valuable diagnostic tool for identifying at-risk individuals for AD and highlight the pivotal role of the radiomic biomarker. Importantly, built upon data-driven analyses commonly seen in previous radiomics studies, our research delves into AD pathology to further elucidate the underlying reasons behind the robust predictive performance of the MRI radiomic predictor.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
烟花应助尊敬乐蕊采纳,获得30
刚刚
学术蝗虫发布了新的文献求助10
1秒前
姜姜完成签到,获得积分10
1秒前
上官若男应助Kx采纳,获得10
2秒前
莫问发布了新的文献求助10
3秒前
科研通AI2S应助gigadrill采纳,获得10
4秒前
桐桐应助溜了溜了采纳,获得10
4秒前
科研通AI2S应助hahah采纳,获得10
4秒前
李sir完成签到 ,获得积分10
4秒前
5秒前
6秒前
6秒前
Zhoujian发布了新的文献求助10
7秒前
7秒前
今后应助luca采纳,获得10
7秒前
8秒前
wanci应助人文采纳,获得10
8秒前
10秒前
10秒前
hahah完成签到,获得积分10
12秒前
12秒前
泛泛之交发布了新的文献求助10
13秒前
spark810应助Twilight采纳,获得10
14秒前
yxyyyy完成签到 ,获得积分10
14秒前
少年发布了新的文献求助10
15秒前
Simple发布了新的文献求助20
16秒前
peng发布了新的文献求助10
16秒前
所所应助fanmo采纳,获得10
18秒前
18秒前
18秒前
19秒前
20秒前
丘比特应助想打就打007采纳,获得10
20秒前
酷波er应助dongjingran采纳,获得10
21秒前
丿淘丶Tao丨完成签到,获得积分10
21秒前
22秒前
一纸墨香完成签到,获得积分20
22秒前
22秒前
22秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124857
求助须知:如何正确求助?哪些是违规求助? 2775196
关于积分的说明 7725657
捐赠科研通 2430668
什么是DOI,文献DOI怎么找? 1291358
科研通“疑难数据库(出版商)”最低求助积分说明 622123
版权声明 600328