光异构化
化学
光化学
异构化
光致变色
化学物理
极化子
光激发
偶氮苯
光子学
共振(粒子物理)
光电子学
激发态
原子物理学
材料科学
分子
物理
生物化学
有机化学
催化作用
作者
Inki Lee,Sarah R. Melton,Ding Xu,Milan Delor
摘要
Strong coupling between photonic modes and molecular electronic excitations, creating hybrid light-matter states called polaritons, is an attractive avenue for controlling chemical reactions. Nevertheless, experimental demonstrations of polariton-modified chemical reactions remain sparse. Here, we demonstrate modified photoisomerization kinetics of merocyanine and diarylethene by coupling the reactant's optical transition with photonic microcavity modes. We leverage broadband Fourier-plane optical microscopy to noninvasively and rapidly monitor photoisomerization within microcavities, enabling systematic investigation of chemical kinetics for different cavity-exciton detunings and photoexcitation conditions. We demonstrate three distinct effects of cavity coupling: first, a renormalization of the photonic density of states, akin to a Purcell effect, leads to enhanced absorption and isomerization rates at certain wavelengths, notably red-shifting the onset of photoisomerization. This effect is present under both strong and weak light-matter couplings. Second, kinetic competition between polariton localization into reactive molecular states and cavity losses leads to a suppression of the photoisomerization yield. Finally, our key result is that in reaction mixtures with multiple reactant isomers, exhibiting partially overlapping optical transitions and distinct isomerization pathways, the cavity resonance can be tuned to funnel photoexcitations into specific reactant isomers. Thus, upon decoherence, polaritons localize into a chosen isomer, selectively triggering the latter's photoisomerization despite initially being delocalized across all isomers. This result suggests that careful tuning of the cavity resonance is a promising avenue to steer chemical reactions and enhance product selectivity in reaction mixtures.
科研通智能强力驱动
Strongly Powered by AbleSci AI