Bioinformatic validation and machine learning-based exploration of purine metabolism-related gene signatures in the context of immunotherapeutic strategies for nonspecific orbital inflammation

计算生物学 背景(考古学) 计算机科学 生物 生物信息学 古生物学
作者
Zixuan Wu,Chi Fang,Yi Hu,Xin Peng,Zheyuan Zhang,Xiaolei Yao,Qinghua Peng
出处
期刊:Frontiers in Immunology [Frontiers Media SA]
卷期号:15 被引量:1
标识
DOI:10.3389/fimmu.2024.1318316
摘要

Background Nonspecific orbital inflammation (NSOI) represents a perplexing and persistent proliferative inflammatory disorder of idiopathic nature, characterized by a heterogeneous lymphoid infiltration within the orbital region. This condition, marked by the aberrant metabolic activities of its cellular constituents, starkly contrasts with the metabolic equilibrium found in healthy cells. Among the myriad pathways integral to cellular metabolism, purine metabolism emerges as a critical player, providing the building blocks for nucleic acid synthesis, such as DNA and RNA. Despite its significance, the contribution of Purine Metabolism Genes (PMGs) to the pathophysiological landscape of NSOI remains a mystery, highlighting a critical gap in our understanding of the disease’s molecular underpinnings. Methods To bridge this knowledge gap, our study embarked on an exploratory journey to identify and validate PMGs implicated in NSOI, employing a comprehensive bioinformatics strategy. By intersecting differential gene expression analyses with a curated list of 92 known PMGs, we aimed to pinpoint those with potential roles in NSOI. Advanced methodologies, including Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA), facilitated a deep dive into the biological functions and pathways associated with these PMGs. Further refinement through Lasso regression and Support Vector Machine-Recursive Feature Elimination (SVM-RFE) enabled the identification of key hub genes and the evaluation of their diagnostic prowess for NSOI. Additionally, the relationship between these hub PMGs and relevant clinical parameters was thoroughly investigated. To corroborate our findings, we analyzed expression data from datasets GSE58331 and GSE105149, focusing on the seven PMGs identified as potentially crucial to NSOI pathology. Results Our investigation unveiled seven PMGs (ENTPD1, POLR2K, NPR2, PDE6D, PDE6H, PDE4B, and ALLC) as intimately connected to NSOI. Functional analyses shed light on their involvement in processes such as peroxisome targeting sequence binding, seminiferous tubule development, and ciliary transition zone organization. Importantly, the diagnostic capabilities of these PMGs demonstrated promising efficacy in distinguishing NSOI from non-affected states. Conclusions Through rigorous bioinformatics analyses, this study unveils seven PMGs as novel biomarker candidates for NSOI, elucidating their potential roles in the disease’s pathogenesis. These discoveries not only enhance our understanding of NSOI at the molecular level but also pave the way for innovative approaches to monitor and study its progression, offering a beacon of hope for individuals afflicted by this enigmatic condition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
5秒前
液晶屏99完成签到,获得积分10
19秒前
kyt_vip完成签到,获得积分10
20秒前
laber完成签到,获得积分0
22秒前
zpmz完成签到 ,获得积分10
24秒前
谢陈完成签到 ,获得积分10
24秒前
神勇的天问完成签到 ,获得积分10
24秒前
量子星尘发布了新的文献求助10
29秒前
木木杉完成签到 ,获得积分10
34秒前
38秒前
keke发布了新的文献求助10
44秒前
luokm完成签到,获得积分10
49秒前
qin完成签到 ,获得积分10
51秒前
yoyo完成签到 ,获得积分10
55秒前
sx666完成签到 ,获得积分10
57秒前
望远Arena发布了新的文献求助30
58秒前
GaCf完成签到,获得积分20
58秒前
端庄洪纲完成签到 ,获得积分10
59秒前
冷艳的又蓝完成签到 ,获得积分10
59秒前
量子星尘发布了新的文献求助10
1分钟前
淼淼之锋完成签到 ,获得积分10
1分钟前
Akim应助qausyh采纳,获得10
1分钟前
sci_zt完成签到 ,获得积分10
1分钟前
矜持完成签到 ,获得积分10
1分钟前
纸条条完成签到 ,获得积分10
1分钟前
粉鳍完成签到 ,获得积分10
1分钟前
乐观的星月完成签到 ,获得积分10
1分钟前
cocofan完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
我不是哪吒完成签到 ,获得积分10
1分钟前
qausyh完成签到,获得积分10
1分钟前
jhgfjkhgkjbjb完成签到 ,获得积分10
1分钟前
贝贝完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
孟寐以求完成签到 ,获得积分10
1分钟前
无心的星月完成签到 ,获得积分10
1分钟前
haqime完成签到 ,获得积分10
1分钟前
无幻完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Terminologia Embryologica 500
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612052
求助须知:如何正确求助?哪些是违规求助? 4696188
关于积分的说明 14890603
捐赠科研通 4731306
什么是DOI,文献DOI怎么找? 2546115
邀请新用户注册赠送积分活动 1510425
关于科研通互助平台的介绍 1473314