已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Bioinformatic validation and machine learning-based exploration of purine metabolism-related gene signatures in the context of immunotherapeutic strategies for nonspecific orbital inflammation

计算生物学 背景(考古学) 计算机科学 生物 生物信息学 古生物学
作者
Zixuan Wu,Chi Fang,Yi Hu,Xin Peng,Zheyuan Zhang,Xiaolei Yao,Qinghua Peng
出处
期刊:Frontiers in Immunology [Frontiers Media SA]
卷期号:15 被引量:1
标识
DOI:10.3389/fimmu.2024.1318316
摘要

Background Nonspecific orbital inflammation (NSOI) represents a perplexing and persistent proliferative inflammatory disorder of idiopathic nature, characterized by a heterogeneous lymphoid infiltration within the orbital region. This condition, marked by the aberrant metabolic activities of its cellular constituents, starkly contrasts with the metabolic equilibrium found in healthy cells. Among the myriad pathways integral to cellular metabolism, purine metabolism emerges as a critical player, providing the building blocks for nucleic acid synthesis, such as DNA and RNA. Despite its significance, the contribution of Purine Metabolism Genes (PMGs) to the pathophysiological landscape of NSOI remains a mystery, highlighting a critical gap in our understanding of the disease’s molecular underpinnings. Methods To bridge this knowledge gap, our study embarked on an exploratory journey to identify and validate PMGs implicated in NSOI, employing a comprehensive bioinformatics strategy. By intersecting differential gene expression analyses with a curated list of 92 known PMGs, we aimed to pinpoint those with potential roles in NSOI. Advanced methodologies, including Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA), facilitated a deep dive into the biological functions and pathways associated with these PMGs. Further refinement through Lasso regression and Support Vector Machine-Recursive Feature Elimination (SVM-RFE) enabled the identification of key hub genes and the evaluation of their diagnostic prowess for NSOI. Additionally, the relationship between these hub PMGs and relevant clinical parameters was thoroughly investigated. To corroborate our findings, we analyzed expression data from datasets GSE58331 and GSE105149, focusing on the seven PMGs identified as potentially crucial to NSOI pathology. Results Our investigation unveiled seven PMGs (ENTPD1, POLR2K, NPR2, PDE6D, PDE6H, PDE4B, and ALLC) as intimately connected to NSOI. Functional analyses shed light on their involvement in processes such as peroxisome targeting sequence binding, seminiferous tubule development, and ciliary transition zone organization. Importantly, the diagnostic capabilities of these PMGs demonstrated promising efficacy in distinguishing NSOI from non-affected states. Conclusions Through rigorous bioinformatics analyses, this study unveils seven PMGs as novel biomarker candidates for NSOI, elucidating their potential roles in the disease’s pathogenesis. These discoveries not only enhance our understanding of NSOI at the molecular level but also pave the way for innovative approaches to monitor and study its progression, offering a beacon of hope for individuals afflicted by this enigmatic condition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
似宁发布了新的文献求助10
2秒前
2秒前
xiaoting发布了新的文献求助20
3秒前
粒子耶发布了新的文献求助10
4秒前
甜甜圈完成签到,获得积分10
4秒前
我是老大应助notfound采纳,获得10
4秒前
5秒前
科研通AI2S应助yanzu采纳,获得10
6秒前
所所应助晴云采纳,获得10
7秒前
7秒前
冷傲翠桃完成签到,获得积分20
7秒前
aixue发布了新的文献求助10
9秒前
搜集达人应助似宁采纳,获得10
9秒前
10秒前
奇妙淞发布了新的文献求助10
11秒前
12秒前
冷傲翠桃发布了新的文献求助10
15秒前
16秒前
从容芮应助科研通管家采纳,获得20
16秒前
打打应助科研通管家采纳,获得10
16秒前
16秒前
CodeCraft应助科研通管家采纳,获得10
16秒前
16秒前
加菲丰丰应助科研通管家采纳,获得20
16秒前
晴云发布了新的文献求助10
19秒前
团装完成签到 ,获得积分10
20秒前
科研菜鸟发布了新的文献求助10
20秒前
打打应助樱桃小完犊子采纳,获得10
21秒前
发发发完成签到,获得积分10
22秒前
23秒前
24秒前
26秒前
27秒前
sukasuka发布了新的文献求助10
27秒前
tgoutgou发布了新的文献求助20
28秒前
落寞臻发布了新的文献求助10
30秒前
顾矜应助夜漫雪采纳,获得10
30秒前
31秒前
传奇3应助aixue采纳,获得10
31秒前
31秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158476
求助须知:如何正确求助?哪些是违规求助? 2809636
关于积分的说明 7883145
捐赠科研通 2468333
什么是DOI,文献DOI怎么找? 1314077
科研通“疑难数据库(出版商)”最低求助积分说明 630572
版权声明 601963