Progressive Negative Enhancing Contrastive Learning for Image Dehazing and Beyond

计算机科学 人工智能 计算机视觉 图像(数学) 图像处理 计算机图形学(图像)
作者
De Cheng,Yan Li,Dingwen Zhang,Nannan Wang,Jiande Sun,Xinbo Gao
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 8783-8798 被引量:7
标识
DOI:10.1109/tmm.2024.3382493
摘要

Image dehazing is a pivotal preliminary step in the advancement of robust intelligent surveillance system. However, it is an extremely challenging ill-posed problem, as it faces severe information degradation when accurately restoring the clean image from its haze-polluted counterpart. This paper proposes a novel Progressive Negative Enhancing (PNE) contrastive learning mechanism to fully exploit various types of negative information, thereby facilitating the traditional positive-oriented objective function for image dehazing. The proposed method can progressively update the negative samples during model training, to steadily squeeze the restored image towards its desired clean target from various directions. Furthermore, considering the image dehazing task as a many-to-one feature mapping problem, we also make an early effort to enhance the robustness of the dehazing model under variational haze densities. Specifically, a novel density-variational dehazing network is proposed to be optimized under the consistency-regularized framework using the proposed PNE learning mechanism. The consistency regularization ensures consistent output given multi-level degraded hazy images, thereby significantly enhancing the robustness of the model in dealing with various hazy scenarios. Extensive experiments demonstrate that the proposed method exhibits superior performance over existing state-of-the-art methods. It achieves average PSNR boosts of 0.60dB, 0.28dB and 0.82dB on dehazing, deraining and desnowing tasks, respectively. The source code is available at https://github.com/YanLi-LY/PNE-Net .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
罗罗罗发布了新的文献求助10
刚刚
1秒前
北极光发布了新的文献求助10
2秒前
忆Y完成签到 ,获得积分10
2秒前
Chloe驳回了思源应助
2秒前
2秒前
mf发布了新的文献求助10
3秒前
jia雪完成签到,获得积分10
4秒前
4秒前
lj完成签到 ,获得积分10
5秒前
5秒前
思源应助zzz采纳,获得10
5秒前
从容的雁露完成签到,获得积分20
5秒前
6秒前
6秒前
三水鱼鱼发布了新的文献求助20
6秒前
科目三应助bobo采纳,获得10
6秒前
hlxhlx发布了新的文献求助20
6秒前
7秒前
7秒前
7秒前
7秒前
多情赛君发布了新的文献求助10
8秒前
科研通AI6应助等待戈多采纳,获得30
8秒前
8秒前
财源滚滚发布了新的文献求助10
9秒前
9秒前
cenghao发布了新的文献求助30
9秒前
xiaoxin发布了新的文献求助10
9秒前
打野完成签到,获得积分10
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
正科发布了新的文献求助10
10秒前
11秒前
852应助xx采纳,获得10
11秒前
上官若男应助自愈合采纳,获得10
11秒前
Owen应助淡然的智宸采纳,获得10
12秒前
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578106
求助须知:如何正确求助?哪些是违规求助? 4663067
关于积分的说明 14744528
捐赠科研通 4603755
什么是DOI,文献DOI怎么找? 2526647
邀请新用户注册赠送积分活动 1496234
关于科研通互助平台的介绍 1465674