清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Progressive Negative Enhancing Contrastive Learning for Image Dehazing and Beyond

计算机科学 人工智能 计算机视觉 图像(数学) 图像处理 计算机图形学(图像)
作者
De Cheng,Yan Li,Dingwen Zhang,Nannan Wang,Jiande Sun,Xinbo Gao
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 8783-8798 被引量:7
标识
DOI:10.1109/tmm.2024.3382493
摘要

Image dehazing is a pivotal preliminary step in the advancement of robust intelligent surveillance system. However, it is an extremely challenging ill-posed problem, as it faces severe information degradation when accurately restoring the clean image from its haze-polluted counterpart. This paper proposes a novel Progressive Negative Enhancing (PNE) contrastive learning mechanism to fully exploit various types of negative information, thereby facilitating the traditional positive-oriented objective function for image dehazing. The proposed method can progressively update the negative samples during model training, to steadily squeeze the restored image towards its desired clean target from various directions. Furthermore, considering the image dehazing task as a many-to-one feature mapping problem, we also make an early effort to enhance the robustness of the dehazing model under variational haze densities. Specifically, a novel density-variational dehazing network is proposed to be optimized under the consistency-regularized framework using the proposed PNE learning mechanism. The consistency regularization ensures consistent output given multi-level degraded hazy images, thereby significantly enhancing the robustness of the model in dealing with various hazy scenarios. Extensive experiments demonstrate that the proposed method exhibits superior performance over existing state-of-the-art methods. It achieves average PSNR boosts of 0.60dB, 0.28dB and 0.82dB on dehazing, deraining and desnowing tasks, respectively. The source code is available at https://github.com/YanLi-LY/PNE-Net .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
米修完成签到,获得积分20
6秒前
CodeCraft应助居家小可采纳,获得10
11秒前
22秒前
苗苗发布了新的文献求助10
26秒前
40秒前
苗苗完成签到 ,获得积分10
41秒前
loathebm发布了新的文献求助10
43秒前
NexusExplorer应助loathebm采纳,获得10
55秒前
灿烂而孤独的八戒完成签到 ,获得积分10
1分钟前
1分钟前
居家小可发布了新的文献求助10
1分钟前
我睡觉的时候不困完成签到 ,获得积分10
1分钟前
居家小可完成签到,获得积分10
1分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
2分钟前
如歌完成签到,获得积分10
2分钟前
不羁之魂完成签到,获得积分10
2分钟前
2分钟前
3分钟前
飞快的孱发布了新的文献求助10
3分钟前
CYT完成签到,获得积分10
3分钟前
chenlc971125完成签到 ,获得积分10
4分钟前
科研通AI5应助义气的含烟采纳,获得10
5分钟前
5分钟前
5分钟前
义气的含烟完成签到,获得积分10
5分钟前
嘻嘻完成签到,获得积分10
7分钟前
Fairy完成签到,获得积分10
8分钟前
夏日香气完成签到 ,获得积分10
8分钟前
Ava应助pepper采纳,获得10
9分钟前
大模型应助科研通管家采纳,获得10
9分钟前
9分钟前
9分钟前
咯咯咯完成签到 ,获得积分10
10分钟前
10分钟前
飞快的孱发布了新的文献求助10
10分钟前
Jasper应助科研通管家采纳,获得10
11分钟前
pepper完成签到,获得积分20
11分钟前
12分钟前
飞快的孱发布了新的文献求助10
12分钟前
pepper发布了新的文献求助10
12分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582490
求助须知:如何正确求助?哪些是违规求助? 4000216
关于积分的说明 12382261
捐赠科研通 3675224
什么是DOI,文献DOI怎么找? 2025756
邀请新用户注册赠送积分活动 1059394
科研通“疑难数据库(出版商)”最低求助积分说明 946082