亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Progressive Negative Enhancing Contrastive Learning for Image Dehazing and Beyond

计算机科学 人工智能 计算机视觉 图像(数学) 图像处理 计算机图形学(图像)
作者
De Cheng,Yan Li,Dingwen Zhang,Nannan Wang,Jiande Sun,Xinbo Gao
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 8783-8798 被引量:7
标识
DOI:10.1109/tmm.2024.3382493
摘要

Image dehazing is a pivotal preliminary step in the advancement of robust intelligent surveillance system. However, it is an extremely challenging ill-posed problem, as it faces severe information degradation when accurately restoring the clean image from its haze-polluted counterpart. This paper proposes a novel Progressive Negative Enhancing (PNE) contrastive learning mechanism to fully exploit various types of negative information, thereby facilitating the traditional positive-oriented objective function for image dehazing. The proposed method can progressively update the negative samples during model training, to steadily squeeze the restored image towards its desired clean target from various directions. Furthermore, considering the image dehazing task as a many-to-one feature mapping problem, we also make an early effort to enhance the robustness of the dehazing model under variational haze densities. Specifically, a novel density-variational dehazing network is proposed to be optimized under the consistency-regularized framework using the proposed PNE learning mechanism. The consistency regularization ensures consistent output given multi-level degraded hazy images, thereby significantly enhancing the robustness of the model in dealing with various hazy scenarios. Extensive experiments demonstrate that the proposed method exhibits superior performance over existing state-of-the-art methods. It achieves average PSNR boosts of 0.60dB, 0.28dB and 0.82dB on dehazing, deraining and desnowing tasks, respectively. The source code is available at https://github.com/YanLi-LY/PNE-Net .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
琪琪发布了新的文献求助30
1秒前
小天小天完成签到,获得积分10
1秒前
顶刊我来了完成签到,获得积分10
3秒前
吾日三省吾身完成签到,获得积分10
4秒前
5秒前
6秒前
10秒前
飞快的孱发布了新的文献求助10
11秒前
13秒前
黑摄会阿Fay完成签到,获得积分10
13秒前
GingerF应助Ken采纳,获得50
14秒前
呆萌初南完成签到 ,获得积分10
16秒前
19秒前
小二郎应助Aleksibob采纳,获得30
20秒前
马嘉祺超绝鸡肉线完成签到,获得积分10
20秒前
22秒前
GavinYi完成签到,获得积分10
23秒前
小马甲应助琪琪采纳,获得10
24秒前
luyajie发布了新的文献求助10
25秒前
25秒前
26秒前
舒心谷雪完成签到 ,获得积分10
28秒前
小二郎应助刺猬采纳,获得10
28秒前
29秒前
Aleksibob完成签到,获得积分10
30秒前
SciGPT应助丰富的松鼠采纳,获得10
33秒前
喜悦宫苴完成签到,获得积分10
34秒前
34秒前
36秒前
乐乐应助Tracy采纳,获得10
39秒前
酷波er应助科研通管家采纳,获得10
40秒前
英姑应助渡己。采纳,获得10
40秒前
烟花应助科研通管家采纳,获得50
40秒前
JamesPei应助科研通管家采纳,获得10
40秒前
归尘应助科研通管家采纳,获得10
40秒前
赘婿应助科研通管家采纳,获得10
40秒前
香蕉觅云应助科研通管家采纳,获得10
40秒前
归尘应助科研通管家采纳,获得10
40秒前
研友_VZG7GZ应助科研通管家采纳,获得10
40秒前
田様应助科研通管家采纳,获得10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488365
求助须知:如何正确求助?哪些是违规求助? 4587236
关于积分的说明 14413292
捐赠科研通 4518528
什么是DOI,文献DOI怎么找? 2475911
邀请新用户注册赠送积分活动 1461433
关于科研通互助平台的介绍 1434314