Progressive Negative Enhancing Contrastive Learning for Image Dehazing and Beyond

计算机科学 人工智能 计算机视觉 图像(数学) 图像处理 计算机图形学(图像)
作者
De Cheng,Yan Li,Dingwen Zhang,Nannan Wang,Jiande Sun,Xinbo Gao
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 8783-8798 被引量:3
标识
DOI:10.1109/tmm.2024.3382493
摘要

Image dehazing is a pivotal preliminary step in the advancement of robust intelligent surveillance system. However, it is an extremely challenging ill-posed problem, as it faces severe information degradation when accurately restoring the clean image from its haze-polluted counterpart. This paper proposes a novel Progressive Negative Enhancing (PNE) contrastive learning mechanism to fully exploit various types of negative information, thereby facilitating the traditional positive-oriented objective function for image dehazing. The proposed method can progressively update the negative samples during model training, to steadily squeeze the restored image towards its desired clean target from various directions. Furthermore, considering the image dehazing task as a many-to-one feature mapping problem, we also make an early effort to enhance the robustness of the dehazing model under variational haze densities. Specifically, a novel density-variational dehazing network is proposed to be optimized under the consistency-regularized framework using the proposed PNE learning mechanism. The consistency regularization ensures consistent output given multi-level degraded hazy images, thereby significantly enhancing the robustness of the model in dealing with various hazy scenarios. Extensive experiments demonstrate that the proposed method exhibits superior performance over existing state-of-the-art methods. It achieves average PSNR boosts of 0.60dB, 0.28dB and 0.82dB on dehazing, deraining and desnowing tasks, respectively. The source code is available at https://github.com/YanLi-LY/PNE-Net .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助司徒无剑采纳,获得10
刚刚
打过很多次改哦不完成签到,获得积分10
刚刚
打打应助iufan采纳,获得10
1秒前
zheng发布了新的文献求助10
1秒前
hao完成签到,获得积分10
3秒前
3秒前
万能的土豆完成签到 ,获得积分10
3秒前
LK完成签到 ,获得积分10
3秒前
这个文献你有么完成签到,获得积分10
4秒前
大方的若山应助李铎采纳,获得10
4秒前
木木完成签到,获得积分10
6秒前
双shuang完成签到,获得积分10
6秒前
7秒前
散作满天星完成签到,获得积分20
7秒前
yyy完成签到 ,获得积分10
7秒前
marinemiao完成签到,获得积分10
7秒前
lxlcx发布了新的文献求助10
7秒前
Alex发布了新的文献求助10
8秒前
zeroicy完成签到,获得积分10
8秒前
霹雳Young完成签到 ,获得积分10
8秒前
9秒前
可耐的雁凡完成签到 ,获得积分10
9秒前
黄子斌发布了新的文献求助10
9秒前
打打应助2123121321321采纳,获得10
10秒前
guajiguaji发布了新的文献求助10
10秒前
yyk完成签到,获得积分10
10秒前
西域卧虎完成签到 ,获得积分10
11秒前
奋斗的绝悟完成签到,获得积分10
11秒前
Luckyz完成签到,获得积分10
12秒前
13秒前
rklv发布了新的文献求助10
14秒前
14秒前
LY发布了新的文献求助30
14秒前
zqlxueli完成签到 ,获得积分10
14秒前
Luckyz发布了新的文献求助10
15秒前
1117完成签到 ,获得积分10
15秒前
16秒前
17秒前
17秒前
思源应助chw采纳,获得10
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134416
求助须知:如何正确求助?哪些是违规求助? 2785328
关于积分的说明 7771336
捐赠科研通 2440922
什么是DOI,文献DOI怎么找? 1297593
科研通“疑难数据库(出版商)”最低求助积分说明 625007
版权声明 600792