Progressive Negative Enhancing Contrastive Learning for Image Dehazing and Beyond

计算机科学 人工智能 计算机视觉 图像(数学) 图像处理 计算机图形学(图像)
作者
De Cheng,Yan Li,Dingwen Zhang,Nannan Wang,Jiande Sun,Xinbo Gao
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 8783-8798 被引量:7
标识
DOI:10.1109/tmm.2024.3382493
摘要

Image dehazing is a pivotal preliminary step in the advancement of robust intelligent surveillance system. However, it is an extremely challenging ill-posed problem, as it faces severe information degradation when accurately restoring the clean image from its haze-polluted counterpart. This paper proposes a novel Progressive Negative Enhancing (PNE) contrastive learning mechanism to fully exploit various types of negative information, thereby facilitating the traditional positive-oriented objective function for image dehazing. The proposed method can progressively update the negative samples during model training, to steadily squeeze the restored image towards its desired clean target from various directions. Furthermore, considering the image dehazing task as a many-to-one feature mapping problem, we also make an early effort to enhance the robustness of the dehazing model under variational haze densities. Specifically, a novel density-variational dehazing network is proposed to be optimized under the consistency-regularized framework using the proposed PNE learning mechanism. The consistency regularization ensures consistent output given multi-level degraded hazy images, thereby significantly enhancing the robustness of the model in dealing with various hazy scenarios. Extensive experiments demonstrate that the proposed method exhibits superior performance over existing state-of-the-art methods. It achieves average PSNR boosts of 0.60dB, 0.28dB and 0.82dB on dehazing, deraining and desnowing tasks, respectively. The source code is available at https://github.com/YanLi-LY/PNE-Net .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ED应助yyz采纳,获得10
刚刚
Fengzhen007完成签到,获得积分10
刚刚
刚刚
超级柜子完成签到,获得积分10
刚刚
乡乡发布了新的文献求助10
1秒前
1秒前
1秒前
虚心的觅松关注了科研通微信公众号
2秒前
XylonYu完成签到,获得积分10
2秒前
fyh8818完成签到,获得积分20
2秒前
2秒前
yznfly应助哈哈哈哈哈采纳,获得30
2秒前
蜡笔小新完成签到,获得积分10
2秒前
布鲁斯盖完成签到,获得积分10
2秒前
华仔完成签到,获得积分10
2秒前
2秒前
3秒前
青苔完成签到,获得积分10
3秒前
在水一方应助南风知我意采纳,获得10
3秒前
LIN完成签到,获得积分10
4秒前
carlitos完成签到 ,获得积分10
4秒前
4秒前
nuannuan完成签到,获得积分10
4秒前
沉静从蓉发布了新的文献求助10
4秒前
周宇飞完成签到 ,获得积分10
5秒前
可爱小哪吒完成签到,获得积分10
5秒前
洛苓轩完成签到,获得积分10
6秒前
Sodagreen2023发布了新的文献求助10
6秒前
nuannuan发布了新的文献求助10
7秒前
7秒前
顾矜应助ironsilica采纳,获得10
7秒前
33完成签到,获得积分10
7秒前
光伏大帝发布了新的文献求助10
7秒前
seedcui完成签到,获得积分10
7秒前
佳俊完成签到,获得积分10
7秒前
降智小甜饼完成签到,获得积分10
7秒前
安桥完成签到,获得积分20
8秒前
橘猫完成签到 ,获得积分10
8秒前
丑鸭完成签到,获得积分10
8秒前
洛苓轩发布了新的文献求助10
8秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953608
求助须知:如何正确求助?哪些是违规求助? 3499327
关于积分的说明 11094832
捐赠科研通 3229935
什么是DOI,文献DOI怎么找? 1785767
邀请新用户注册赠送积分活动 869499
科研通“疑难数据库(出版商)”最低求助积分说明 801478