Deep Learning to Differentiate Benign and Malignant Vertebral Fractures at Multidetector CT

医学 接收机工作特性 放射科 内科学
作者
Sarah C. Foreman,David Schinz,Malek El Husseini,Sophia S. Goller,Jürgen Weißinger,Anna-Sophia Dietrich,Martin Renz,Marie‐Christin Metz,Georg C. Feuerriegel,Benedikt Wiestler,Robert Stahl,Benedikt J. Schwaiger,Marcus R. Makowski,Jan S. Kirschke,Alexandra S. Gersing
出处
期刊:Radiology [Radiological Society of North America]
卷期号:310 (3) 被引量:4
标识
DOI:10.1148/radiol.231429
摘要

Background Differentiating between benign and malignant vertebral fractures poses diagnostic challenges. Purpose To investigate the reliability of CT-based deep learning models to differentiate between benign and malignant vertebral fractures. Materials and Methods CT scans acquired in patients with benign or malignant vertebral fractures from June 2005 to December 2022 at two university hospitals were retrospectively identified based on a composite reference standard that included histopathologic and radiologic information. An internal test set was randomly selected, and an external test set was obtained from an additional hospital. Models used a three-dimensional U-Net encoder-classifier architecture and applied data augmentation during training. Performance was evaluated using the area under the receiver operating characteristic curve (AUC) and compared with that of two residents and one fellowship-trained radiologist using the DeLong test. Results The training set included 381 patients (mean age, 69.9 years ± 11.4 [SD]; 193 male) with 1307 vertebrae (378 benign fractures, 447 malignant fractures, 482 malignant lesions). Internal and external test sets included 86 (mean age, 66.9 years ± 12; 45 male) and 65 (mean age, 68.8 years ± 12.5; 39 female) patients, respectively. The better-performing model of two training approaches achieved AUCs of 0.85 (95% CI: 0.77, 0.92) in the internal and 0.75 (95% CI: 0.64, 0.85) in the external test sets. Including an uncertainty category further improved performance to AUCs of 0.91 (95% CI: 0.83, 0.97) in the internal test set and 0.76 (95% CI: 0.64, 0.88) in the external test set. The AUC values of residents were lower than that of the best-performing model in the internal test set (AUC, 0.69 [95% CI: 0.59, 0.78] and 0.71 [95% CI: 0.61, 0.80]) and external test set (AUC, 0.70 [95% CI: 0.58, 0.80] and 0.71 [95% CI: 0.60, 0.82]), with significant differences only for the internal test set (
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
deman完成签到 ,获得积分10
1秒前
丹青发布了新的文献求助10
1秒前
再吃一颗苹果应助Henry采纳,获得50
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
doooo发布了新的文献求助10
3秒前
3秒前
脑洞疼应助镜花水月采纳,获得10
4秒前
4秒前
劲秉应助SHlby采纳,获得10
4秒前
5秒前
BAchelor发布了新的文献求助10
5秒前
dsa发布了新的文献求助10
5秒前
Hello应助ssw采纳,获得10
6秒前
Zinc发布了新的文献求助10
6秒前
南枝完成签到 ,获得积分10
6秒前
6秒前
坚强的哈密瓜完成签到,获得积分10
7秒前
7秒前
共享精神应助renzhiqiang采纳,获得10
7秒前
mb459发布了新的文献求助10
7秒前
Hello应助孙不缺采纳,获得10
8秒前
秀丽的一江完成签到 ,获得积分10
8秒前
8秒前
andrewyu发布了新的文献求助10
8秒前
8秒前
悠悠爱学习完成签到,获得积分10
8秒前
丹青完成签到,获得积分10
9秒前
在水一方应助程小小采纳,获得10
9秒前
9秒前
9秒前
shanshan发布了新的文献求助10
10秒前
碧蓝可乐发布了新的文献求助20
11秒前
777发布了新的文献求助10
11秒前
12秒前
12秒前
Hsia完成签到,获得积分10
12秒前
13秒前
所所应助doooo采纳,获得30
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3663305
求助须知:如何正确求助?哪些是违规求助? 3223962
关于积分的说明 9754101
捐赠科研通 2933829
什么是DOI,文献DOI怎么找? 1606430
邀请新用户注册赠送积分活动 758489
科研通“疑难数据库(出版商)”最低求助积分说明 734809