Dynamic Events in the Flexible Job-Shop Scheduling Problem: Rescheduling with a Hybrid Metaheuristic Algorithm

元启发式 作业车间调度 计算机科学 流水车间调度 数学优化 调度(生产过程) 算法 工作车间 动态优先级调度 数学 嵌入式系统 地铁列车时刻表 布线(电子设计自动化) 操作系统
作者
Shubhendu Kshitij Fuladi,Chang Soo Kim
出处
期刊:Algorithms [MDPI AG]
卷期号:17 (4): 142-142 被引量:2
标识
DOI:10.3390/a17040142
摘要

In the real world of manufacturing systems, production planning is crucial for organizing and optimizing various manufacturing process components. The objective of this paper is to present a methodology for both static scheduling and dynamic scheduling. In the proposed method, a hybrid algorithm is utilized to optimize the static flexible job-shop scheduling problem (FJSP) and dynamic flexible job-shop scheduling problem (DFJSP). This algorithm integrates the genetic algorithm (GA) as a global optimization technique with a simulated annealing (SA) algorithm serving as a local search optimization approach to accelerate convergence and prevent getting stuck in local minima. Additionally, variable neighborhood search (VNS) is utilized for efficient neighborhood search within this hybrid algorithm framework. For the FJSP, the proposed hybrid algorithm is simulated on a 40-benchmark dataset to evaluate its performance. Comparisons among the proposed hybrid algorithm and other algorithms are provided to show the effectiveness of the proposed algorithm, ensuring that the proposed hybrid algorithm can efficiently solve the FJSP, with 38 out of 40 instances demonstrating better results. The primary objective of this study is to perform dynamic scheduling on two datasets, including both single-purpose machine and multi-purpose machine datasets, using the proposed hybrid algorithm with a rescheduling strategy. By observing the results of the DFJSP, dynamic events such as a single machine breakdown, a single job arrival, multiple machine breakdowns, and multiple job arrivals demonstrate that the proposed hybrid algorithm with the rescheduling strategy achieves significant improvement and the proposed method obtains the best new solution, resulting in a significant decrease in makespan.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Owen应助Lilililili采纳,获得10
2秒前
席涑发布了新的文献求助10
2秒前
科研通AI6应助小兰花采纳,获得10
3秒前
汉堡包应助小兰花采纳,获得10
3秒前
3秒前
xyrehab发布了新的文献求助10
6秒前
张培元完成签到,获得积分10
8秒前
Yao完成签到,获得积分10
8秒前
领导范儿应助xxx采纳,获得50
9秒前
格兰猪完成签到 ,获得积分10
9秒前
9秒前
默默访冬完成签到 ,获得积分10
12秒前
Mayday完成签到,获得积分10
12秒前
14秒前
zkx发布了新的文献求助20
15秒前
浮游应助Sience采纳,获得10
17秒前
烟花应助蜡笔小新采纳,获得10
18秒前
18秒前
19秒前
20秒前
研友_VZG7GZ应助宓广缘采纳,获得10
22秒前
kitty完成签到 ,获得积分10
22秒前
23秒前
C_发布了新的文献求助10
25秒前
等意送汝发布了新的文献求助10
25秒前
科研小白完成签到,获得积分10
26秒前
26秒前
菲比完成签到 ,获得积分10
27秒前
小通通完成签到 ,获得积分10
28秒前
aikeyan完成签到,获得积分10
28秒前
科研小白发布了新的文献求助100
30秒前
31秒前
识时务这也完成签到,获得积分10
33秒前
35秒前
36秒前
40秒前
40秒前
范良聪发布了新的文献求助10
40秒前
星辰愿发布了新的文献求助10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563579
求助须知:如何正确求助?哪些是违规求助? 4648467
关于积分的说明 14685031
捐赠科研通 4590445
什么是DOI,文献DOI怎么找? 2518519
邀请新用户注册赠送积分活动 1491143
关于科研通互助平台的介绍 1462432